

Operating Instructions
optoNCDT 1900
EtherNet/IP

ILD1900-2-IE ILD1900-6-IE ILD1900-10-IE ILD1900-25-IE ILD1900-50-IE ILD1900-100-IE ILD1900-200-IE ILD1900-500-IE ILD1900-2LL-IE ILD1900-6LL-IE ILD1900-10LL-IE ILD1900-25LL-IE

ILD1900-50LL-IE

Intelligent laser-optical displacement measurement

MICRO-EPSILON MESSTECHNIK GmbH & Co. KG Königbacher Str. 15

94496 Ortenburg / Deutschland

Tel. +49 (0) 8542 / 168-0 Fax +49 (0) 8542 / 168-90 e-mail info@micro-epsilon.com www.micro-epsilon.com

Contents

1	Safety		7
1.1	Symbols	Used	
1.2	Warnings	S	7
1.3	Notes on	n CE Marking	8
1.4	Intended	Use	8
1.5	Proper Er	nvironment	
2.	Locar S	Safety	10
2. 2.1		diety	
2.2		ass 2	
2.3		ass 3R	
3.	Function	nal Principle, Technical Data	14
3.1		escription	
3.2		d Surface Compensation	
3.3		ll Data	
	3.3.1	ILD1900-xx	
	3.3.2	ILD1900-xxLL	18
4.	Delivery	y	20
4. 1	Unpackin	ng, Included in Delivery	20
4.2			
	Ū		
5.	Mountin	ng	21
5.1	Notes for	r Operation	21
	5.1.1	Reflectance of Target Surface	
	5.1.2	Interferences	22
		5.1.2.1 Ambient Light	22
		5.1.2.2 Color Differences	2
		5.1.2.4 Mechanical Vibrations	22
		5.1.2.5 Motion Blur	22
		5.1.2.6 Surface Roughness	23
		5.1.2.7 Angular Influences	24
	5.1.3	Optimizing the Measurement Accuracy	25

5.2	Mechanical Fastening, Dimensional Drawing	26
	5.2.1 General	26
	5.2.2 Mounting	26
5.3	Control and Display Elements	28
5.4	Electrical Connections	
	5.4.1 RJ45, PoE Connections	
	5.4.2 RJ45 Connection	
	5.4.3 Pin Assignment	32
	5.4.4 Supply Voltage	33
	5.4.5 Turning on the Laser	
	5.4.6 Plug-In Connection, Supply and Output Cable	35
_		
6.	Operation	36
6.1	Getting Ready for Operation	
6.2	Operation via Web Interface, Ethernet	
	6.2.1 General	
	6.2.2 Access via Web Interface	
	6.2.3 Measurement Task Selection	
	6.2.4 Display of Measurement Values in the Web Browser	41
	6.2.5 Video Signal Display in the Web Browser	43
6.3	Parameterization via EtherNet/IP	45
6.4	Timing, Measurement Value Cycles	
6.5	Operation via Membrane Key	46
7.	Setting Sensor Parameters	47
7.1	Preliminary Remarks about the Setting Options	47
7.2	Parameter's Overview	47
7.3	Inputs	
7.4	Data Recording	49
	7.4.1 Preliminary Remarks	
	7.4.2 Measurement Configuration	49
	7.4.3 Measuring Rate	
	7.4.4 Reset Counter	
	7.4.5 ROI Masking	50
	7.4.6 Exposure Mode	
	7.4.7 Peak Selection	52

7.5	Signal Proces	ssing	53
	7.5.1 Pre	eliminary Remarks	53
	7.5.2 Ave	eraging	53
		5.2.1 General	53
	7.5	5.2.2 Moving Average	
	7.5	5.2.3 Recursive Average	55
	7.5	5.2.4 Median	
	7.5.3 Zer	roing, Mastering	56
7.6	Digital Output	t EtherNet/IP	57
	7.6.1 Val	lues, Rangeslues, Ranges	57
	7.6.2 Bel	havior of the Digital Output	59
7.7	System Settin	ngs	61
	7.7.1 Ge	eneral	61
	7.7.2 Un	nit, Language	61
	7.7.3 Loa	ad & Save	62
	7.7.4 lm	port, Exportport, Export	64
	7.7.5 Res	set Sensor	65
	7.7.6 Bo	oot Mode	65
8.		, Documentation	
8.1	Preliminary R	emarks	66
8.1 8.2	Preliminary Ro Saving the Se	entry tings, Continuing EtherNet/IP Operation	66 66
8.1 8.2 8.3	Preliminary Ro Saving the Se General	emarksettings, Continuing EtherNet/IP Operation	66 66
8.1 8.2	Preliminary Ro Saving the Se General Explicit Messa	emarksettings, Continuing EtherNet/IP Operationaging	66 66 66
8.1 8.2 8.3	Preliminary Ro Saving the Se General Explicit Messa 8.4.1 Sta	emarksettings, Continuing EtherNet/IP Operation	
8.1 8.2 8.3	Preliminary Rosaving the Se General Explicit Messa 8.4.1 Sta 8.4	emarksettings, Continuing EtherNet/IP Operation	
8.1 8.2 8.3	Preliminary Rosaving the Se General Explicit Messa 8.4.1 Sta 8.4	emarksettings, Continuing EtherNet/IP Operation	
8.1 8.2 8.3	Preliminary Ri Saving the Se General Explicit Messa 8.4.1 Sta 8.4 8.4	emarks	
8.1 8.2 8.3	Preliminary Risaving the Se General Explicit Messa 8.4.1 Sta 8.4 8.4 8.4	emarks	
8.1 8.2 8.3	Preliminary Risaving the Se General Explicit Messa 8.4.1 Sta 8.4 8.4 8.4 8.4	emarks	
8.1 8.2 8.3	Preliminary Risaving the Se General Explicit Messi 8.4.1 Sta 8.4 8.4 8.4 8.4 8.4	emarks	
8.1 8.2 8.3	Preliminary Risaving the Segeneral Explicit Messa 8.4.1 Sta 8.4 8.4 8.4 8.4 8.4 8.4 8.4 8.4 8.4 8.4	lemarks	
8.1 8.2 8.3	Preliminary Risaving the Segeneral Explicit Messa 8.4.1 Sta 8.4 8.4 8.4 8.4 8.4 8.4 8.4 8.4 8.4 8.4	lemarks	
8.1 8.2 8.3	Preliminary Risaving the Segeneral Explicit Messa 8.4.1 Sta 8.4 8.4 8.4 8.4 8.4 8.4 8.4 8.4 8.4 8.4	lemarks	
8.1 8.2 8.3	Preliminary Risaving the Segeneral Explicit Messa 8.4.1 Sta 8.4 8.4 8.4 8.4 8.4 8.4 8.4 8.4 8.4 8.4	lemarks	

	8.4.2	Manufact	urer Specific Object	S	 		 88
		8.4.2.1	Object 0x64 Sens	sor Information.	 		 88
		8.4.2.2	Object 0x70 Data				
		8.4.2.3	Object 0x80 Sign	al Processing	 		 90
		8.4.2.4	Object 0x90 Setti	ngs	 		 91
		8.4.2.5	Object 0xC0 Map	pings	 		 93
		8.4.2.6	Object 0xC1 Prod				
8.5							
	8.5.1	General.			 		 94
	8.5.2	I/O-Conn	ection Fixed OV1 In	put Only	 		 95
	8.5.3	I/O-Conn	ection Fixed OV1 Lis	sten Only	 		 95
	8.5.4		ection Mappable Inp				
	8.5.5	I/O Conn	ection Mappable Lis	ten Only	 		 100
8.6			ile EDS				
8.7 8.8			lales acces				
8.9	IP Addre	ess Sensor (Jnknown		 •	•••••	 102
6.9 8.10	Sypobro	guration	Sensors		 		 102
5.10	8.10.1		36118018				
	8.10.2		eous Synchronizatio				
	J J		-				
9.							
10.	Disclaii	mer			 		 105
11.							
11.		•					
12.	Decom	missionin	g, Disposal		 		 106
Appen	dix						
A 1	Optional	Accessorie	s		 		 107
A 2	Factory	Settings			 		 108
A 3	DHCPS	erver. IP As:	sianment				109

1. Safety

System operation assumes knowledge of the operating instructions.

1.1 Symbols Used

The following symbols are used in these operating instructions:

▲ CAUTION

Indicates a hazardous situation which, if not avoided, may result in minor or moderate injury.

NOTICE

Indicates a situation that may result in property damage if not avoided.

 \Rightarrow

Indicates a user action.

1

Indicates a tip for users.

Measurement

Indicates hardware or a software button/menu.

1.2 Warnings

Connect the power supply according to the regulations for electrical equipment.

- > Risk of injury
- > Damage to or destruction of the sensor

NOTICE

Avoid shocks and impacts to the sensor.

Damage to or destruction of the sensor

Install the sensor on a flat surface using only the mounting holes/threaded holes provided, any type of clamping is not permitted.

> Damage to or destruction of the sensor

The supply voltage must not exceed the specified limits.

> Damage to or destruction of the sensor

Protect the sensor cable against damage. Attach the cable without load, secure the cable after approx. 25 cm and the pigtail on the connector, e.g. using cable ties.

> Destruction of the sensor, failure of the measuring device

optoNCDT 1900 / EtherNet/IP

NOTICE

Avoid constant exposure of the sensor to splashes of water.

> Damage to or destruction of the sensor

Avoid exposure of sensor to aggressive media (detergents, cooling emulsions).

> Damage to or destruction of the sensor

1.3 Notes on CE Marking

The following apply to the optoNCDT 1900 measuring system:

- EU Directive 2014/30/EU
- EU Directive 2011/65/EU

Products which carry the CE mark satisfy the requirements of the EU directives cited and the relevant applicable harmonized European standards (EN). The measuring system is designed for use in industrial environments.

The EU Declaration of Conformity and the technical documentation are available to the responsible authorities according to the EU Directives.

1.4 Intended Use

- The optoNCDT 1900 is designed for use in industrial and laboratory applications. It is used for
 - Measuring displacement, distance, position and thickness
 - Monitoring quality and checking dimensions
- The sensor must only be operated within the values specified in the technical data, see Chap. 3.3.
- The sensor must be used in such a way that no persons are endangered or machines are damaged in the event of malfunction or total failure of the sensor.
- Take additional precautions for safety and damage prevention in case of safety-related applications.

1.5 Proper Environment

- Protection class: IP67 (applies only when sensor cable is plugged in)

Lenses are excluded from the protection class. Contamination of the lenses causes impairment or failure of the function.

- Temperature range:

■ Operation: 0 ... 50 °C ■ Storage: -20 ... 70 °C

Humidity: 5 - 95% (non-condensing)
 Ambient pressure: Atmospheric pressure

The protection class is limited to water, no penetrating liquids or the like.

2. Laser Safety

2.1 General

The optoNCDT 1900 operates with a semiconductor laser with a wavelength of 658 nm (visible/red) or 670 nm (visible/red).

When operating the optoNCDT 1900 sensors, the relevant regulations according to IEC 60825, Part 1 of 05/2014 and the applicable accident prevention regulations must be followed.

If both warning labels are covered over when the unit is installed, the user must ensure that supplementary labels are applied.

Operation of the laser is indicated visually by the LED on the sensor, see Chap. 5.3.

The housing of the optical sensors may only be opened by the manufacturer, see Chap. 10.

For repair and service purposes, the sensors must always be sent to the manufacturer.

2.2 Laser Class 2

The sensors fall within laser class 2. The laser is operated on a pulsed mode, the maximum optical power is \leq 1 mW. The pulse frequency depends on the adjusted measuring rate (0.25 ... 10 kHz). The pulse duration of the peaks is regulated depending on the measuring rate and reflectivity of the target and can be 4 up to 3995 μ s.

Laser radiation. Irritation or injury of the eyes possible. Close your eyes or immediately turn away if the laser beam hits the eye.

Observe the laser protection regulations.

Although the laser output is low, directly looking into the laser beam must be avoided. Close your eyes or immediately turn away if the laser beam hits the eye. Lasers of Class 2 are not subject to notification and a laser protection officer is not required.

optoNCDT 1900 / EtherNet/IP

The following warning labels are attached to the sensor cable:

Fig. 1 Laser labels on the sensor cable

Fig. 2 Laser warning sign on the sensor housing

During operation of the sensor, the pertinent regulations according to IEC 60825-1 on "Safety of laser products" must be fully observed at all times. The sensor complies with all applicable laws for the manufacturer of laser devices.

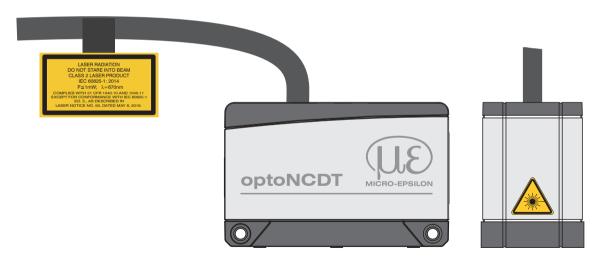


Fig. 3 Sensor cable and sensor with laser sign, class 2

optoNCDT 1900 / EtherNet/IP Page 11

2.3 Laser Class 3R

The sensors fall within laser class 3R. The laser is operated on a pulsed mode, the maximum optical power is \leq 5 mW. The pulse frequency depends on the adjusted measuring rate (0.25 ... 10 kHz). The pulse duration of the peaks is regulated depending on the measuring rate and reflectivity of the target and can be 4 up to 3995 μ s.

Laser radiation. Injury of the eyes possible. Use suitable protective equipment and close your eyes or immediately turn away if the laser beam hits the eye.

Observe the laser protection regulations.

Accordingly, the following applies: The accessible laser radiation is harmful to the eyes. Looking directly into the laser beam is harmful to the eyes with laser class 3R devices. Reflections of shiny or mirroring surfaces are also harmful to the eyes.

Class 3R laser sensors require a laser protection officer.

Mark the laser area recognizable and everlasting. During operation the laser area has to be restricted and marked.

The following warning labels are attached to the sensor cable:

Fig. 4 Laser labels on the sensor cable

Fig. 5 Laser warning sign on the sensor housing

During operation of the sensor, the pertinent regulations according to IEC 60825-1 on "Safety of laser products" must be fully observed at all times. The sensor complies with all applicable laws for the manufacturer of laser devices.

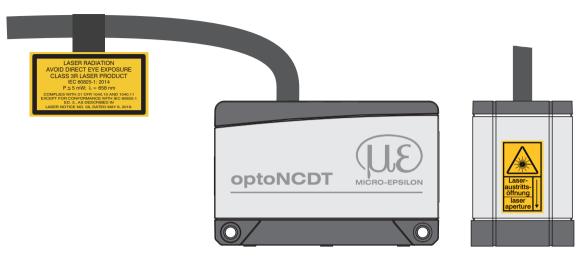


Fig. 6 Sensor cable and sensor with laser sign, class 3R

optoNCDT 1900 / EtherNet/IP Page 13

3. Functional Principle, Technical Data

3.1 Short Description

The optoNCDT 1900 operates according to the principle of optical triangulation, i.e. a visible, modulated light spot is projected onto the surface of the measuring object.

The diffuse part of the reflection of this light spot is imaged on a spatial resolution element (CMOS) by a receiver optic arranged at a certain angle to the optical axis of the laser beam.

A signal processor in the sensor calculates the distance between the light spot on the target and the sensor from the output signal of the CMOS element. The distance value is linearized and output via the Ethernet/IP interface.

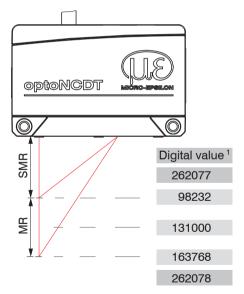


Fig. 7 Term definitions

1) For displacement values without zero setting or mastering.

MR = Measuring range

SMR = Start of measuring range

MMR = Mid of measuring range

EMR = End of measuring range

3.2 Advanced Surface Compensation

The optoNCDT 1900 is equipped with an intelligent surface control feature. New algorithms generate stable measurement results even on demanding surfaces where changing reflections occur. Furthermore, these new algorithms compensate for ambient light up to 50,000 lux. Therefore, this is the sensor with the highest resistance to ambient light in its class which can even be used in strongly illuminated environments.

3.3 Technical Data

3.3.1 ILD1900-xx

Model	ILD1900-	2-IE	6-IE	10-IE	25-IE	50-IE	100-IE	200-IE	500-IE
Measuring range	mm	2	6	10	25	50	100	200	500
Start measuring range	mm	15	17	20	25	40	50	60	100
Mid measuring range	mm	16	20	25	37.5	65	100	160	350
End measuring range	mm	17	23	30	50	90	150	260	600
Measuring rate ¹		7	adjustable st		/ adjustable l z / 8 kHz / 4 k		i 10 kHz 1.0 kHz / 500	Hz / 250 H	lz
I be a setter.	μm	≤ ±1	≤ ±1.8	≤ ±2	≤ ±5	≤ ±10	≤ ±30	≤ ±100	≤ ±400
Linearity	% FSO	≤± 0.05	≤ ±0.03		≤± 0.02		≤± 0.03	≤± 0.05	≤± 0.08
Repeatability ²	μm	< 0.1	< 0.25	< 0.4	< 0.8	< 1.6	< 4	< 8	< 20 40
Temperature stability ³	FSO/K				±0.0	05			
	SMR in μ m	60 x 75	85 x 105	115 x 150	200 x 265	220 x 300	310 x 460	950 x 1200 950 x 12	
Light and diameter	MMR in μ m	55 x 65	57 x 60	60 x 65	70 x 75	95 x 110	140 x 170		950 x 1200
Light spot diameter (± 10 %) 4	EMR in μ m	65 x 75	105 x 120	120 x 140	220 x 260	260 x 300	380 x 410		
		55 x 65 μm with 16 mm	57 x 60 with 20 mm	60 x 65 μm with 25 mm	65 x 70 μm with 35 mm	, , , , , , , , , , , , , , , , , , ,		-	-
Light source						` ,	with laser cla vith laser clas		
Laser class		Class 2 in accordance with DIN EN 60825-1 : 2015-07 optionally class 3R in accordance with DIN EN 60825-1: 2015-07							
Permissible ambient lig	ıht			50,000 lx			30,000 lx	10,0	000 lx
Supply voltage			11	30 V DC or F	PoE, external	supply has p	oriority over P	oE	
Power consumption		< 3 W (24 V)							
Signal input		Laser on/off							

optoNCDT 1900 / EtherNet/IP

Model	ILD1900-	2-IE	6-IE	10-IE	25-IE	50-IE	100-IE	200-IE	500-IE
Digital interface			,		Eth	erNet/IP			
Connection		option	al extension		ed pigtail 0.3 1 / 9 m / 15 m		in M12 plug; ories for suita	ble connectio	n cable)
Temperature	Storage			-	20 +70°C	(non-conder	ising)		
range	Operation				0 +50°C (non-condens	sing)		
Shock (DIN EN 6	60068-2-27)	15 g / 6 ms							
Vibration (DIN E	N 60068-2-6)	30 g / 20 500 Hz							
Protection class		IP67 (DIN EN 60529)							
Material		Aluminum housing							
Weight		approx. 185 g (incl. pigtail)							
Control and display elements		Web interfa		p ⁵ : Application veraging poss	on-specific p	resets; peak a reduction; s	operation mo selection, vide etup manage EtherNet/IP	eo signal; free	ly selectable

FSO = Full Scale Output

SMR = Start of measuring range, MMR = Mid of measuring range, EMR = End of measuring range

The specified data apply to a white, diffuse reflecting surface (Micro-Epsilon reference ceramic for ILD sensors)

- 1) Maximum measuring rate depending on fieldbus and bus cycle time; factory setting: measuring rate 4 kHz, median 9;
- 2) Typical value with measurements at 4 kHz and median 9
- 3) In the mid of the measuring range; the specified value is only achieved by mounting on a metallic sensor holder. Good heat dissipation from the sensor to the holder must be ensured.
- 4) Light spot diameter determined using a point-shaped laser with Gaussian fit (full 1/e² width); for ILD1900-2-IE determined with emulated 90/10 knife-edge method
- 5) Connection to PC via network cable

3.3.2 ILD1900-xxLL

Model	ILD1900-	2LL-IE	6LL-IE	10LL-IE	25LL-IE	50LL-IE		
Measuring range		2 mm	6 mm	10 mm	25 mm	50 mm		
Start of measu	uring range	15 mm	17 mm	20 mm	25 mm	40 mm		
Mid of measu	ring range	16 mm	20 mm	25 mm	37.5 mm	65 mm		
End of measu	ring range	17 mm	23 mm	30 mm	50 mm	90 mm		
Measuring rat	e ¹	7 adju		adjustable between 0 z / 8 kHz / 4 kHz / 2 kł	0.25 10 kHz; Hz /1.0 kHz / 500 Hz /	250 Hz		
Lincovito		$<\pm1\mu\mathrm{m}$	< ±1.2 μm	< ±2 µm	$< \pm 5 \mu \mathrm{m}$	< ±10 µm		
Linearity		$<$ \pm 0.05 % FSO	< ± 0.02 % FSO	< ± 0.02 % FSO	$< \pm 0.02 \%$ FSO	< ± 0.02 % FSO		
Repeatability 5	2	< 0.1 μm	< 0.25 μm	< 0.4 μm	< 0.8 μ m	< 1.6 μm		
Temperature s	stability ³	±0.005 % FSO / K						
	SMR	55 x 480 μm	100 x 600 μm	125 x 730 μm	210 x 950 μm	235 x 1280 μm		
Light spot	MMR	40 x 460 μm	50 x 565 μm	55 x 690 μm	80 x 970 μm	125 x 1500 μm		
diameter	EMR	55 x 440 μm	100 x 525 μm	125 x 660 μm	220 x 1000 μm	325 x 1470 μm		
(± 10 %) ⁴	smallest diameter	40 x 460 μm with 16 mm	50 x 565 μm with 20 mm	55 x 690 μm with 25 mm	80 x 970 μm with 37.5 mm	115 x 1450 μm with 59 mm		
Light source		Semiconductor laser < 1 mW, 670 nm (red) with laser class 2 Semiconductor laser ≤ 5 mW, 658 nm (red) with laser class 3R						
Laser class		Class 2 in accordance with DIN EN 60825-1 : 2015-07 optionally class 3R in accordance with DIN EN 60825-1: 2015-07						
Permissible a	mbient light	50,000 lx						
Supply voltag	е		11 30 VDC or P	oE, external supply h	as priority over PoE			
Power consur	nption			< 3 W (24 V)				

Model	ILD1900-	2LL-IE	6LL-IE	10LL-IE	25LL-IE	50LL-IE	
Signal input				Laser on/off			
Digital interface				EtherNet/IP			
Connection		integrated pigtail 0.3 m with 12-pin M12 plug; optional extension to 3 m / 6 m / 9 m / 15 m (see accessories for suitable connection cable)					
Temperature	Storage		-20 .	+70 °C, non-conde	nsing		
range	Operation	0 +50 °C, non-condensing					
Shock (DIN EN	60068-2-27)	15 g / 6 ms in 3 axes					
Vibration (DIN E	N 60068-2-6)	30 g / 20 500 Hz					
Protection class	3	IP67 (DIN EN 60529)					
Material		Aluminum housing					
Weight		approx. 185 g (incl. pigtail)					
Control and display elements		Select button: factory setting, change operation mode; Web interface for setup ⁵ : Application-specific presets; peak selection, video signal; freely selectable averaging possibilities; data reduction; setup management; 3 color LEDs for power / status / EtherNet/IP					

FSO = Full Scale Output

SMR = Start of measuring range, MMR = Mid of measuring range, EMR = End of measuring range

The specified data apply to a white, diffuse reflecting surface (Micro-Epsilon reference ceramic for ILD sensors)

- 1) Maximum measuring rate depending on fieldbus and bus cycle time; factory setting: measuring rate 4 kHz, median 9;
- 2) Typical value with measurements at 4 kHz and median 9
- 3) In the mid of the measuring range; the specified value is only achieved by mounting on a metallic sensor holder. Good heat dissipation from the sensor to the holder must be ensured.
- 4) Light spot diameter determined using a point-shaped laser with Gaussian fit (full 1/e² width); for ILD1900-2-IE determined with emulated 90/10 knife-edge method
- 5) Connection to PC via network cable

4. Delivery

4.1 Unpacking, Included in Delivery

- 1 ILD1900-x-IE sensor
- 1 assembly instructions
- 1 calibration protocol
- Accessories (2 pc. centering sleeves, 2 pc. M3 x 40)
- Carefully remove the components of the measuring system from the packaging and ensure that the goods are forwarded in such a way that no damage can occur.
- Check the delivery for completeness and shipping damage immediately after unpacking.
- If there is damage or parts are missing, immediately contact the manufacturer or supplier.

Optional accessories are listed in the appendix, see Chap. A 1.

4.2 Storage

Temperature range for storage: -20 ... +70 °C

Humidity: 5 - 95% (non-condensing)

5. Mounting

5.1 Notes for Operation

5.1.1 Reflectance of Target Surface

In principle, the sensor evaluates the diffuse portion of the reflections of the laser light spot.

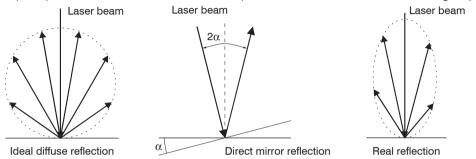


Fig. 8 Reflectance of Target Surface

Any statement about a minimum reflection factor is only possible with reservations, since small diffuse portions can be evaluated even of reflecting surfaces. This happens based on intensity determination of the diffuse reflection from the CMOS signal in real time and subsequent control, see Chap. 3.2. However, for dark or shiny measuring objects, such as black rubber, a longer exposure time may be required. The maximum exposure time is coupled to the measuring rate and can only be increased by lowering the measuring rate of the sensor.

optoNCDT 1900 / EtherNet/IP

5.1.2 Interferences

5.1.2.1 Ambient Light

Thanks to their integrated optical interference filters, the optoNCDT 1900 laser-optical sensors offer outstanding performance in suppressing ambient light. However, ambient light disturbances can occur with shiny measuring objects and at a reduced measuring rate. In these cases it is recommended to provide shielding against ambient light or to switch on the Background suppression function. This applies in particular to measurement work performed in the vicinity of welding devices.

5.1.2.2 Color Differences

Because of intensity compensation, color difference of targets affect the measuring result only slightly. However, such color differences are often combined with different penetration depths of the laser light into the material. Different penetration depths then result in apparent changes of the measuring spot size. Therefore color changes in combination with penetration depth changes may lead to measurement uncertainties.

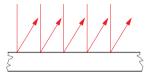
5.1.2.3 Thermal Influences

When the sensor is commissioned, a warm-up time of at least 20 minutes is required to achieve uniform heat distribution in the sensor. If measurement is performed in the μ m accuracy range, the effect of temperature fluctuations on the sensor holder must be considered.

Rapid temperature changes are not detected immediately due to the damping effect of the sensor's heat capacity.

5.1.2.4 Mechanical Vibrations

If a high degree of resolution in the μ m range is required, the sensor and target must be mounted on a stable surface that is damped against vibrations.


5.1.2.5 Motion Blur

If the objects being measured are fast moving and the measuring rate is low, it is possible that movement blurs may result. Therefore, always select a high measuring rate for high-speed operations to prevent errors.

5.1.2.6 Surface Roughness

Laser-optical sensors detect the surface using an extremely small laser spot. They also track slight surface unevenness. In contrast, a tactile, mechanical measurement, e.g. using a caliper, detects a much larger area of the measuring object. In case of traversing measurements, surface roughnesses of $5 \, \mu m$ and more lead to an apparent distance change.

A suitable averaging number may improve the comparability of optical and mechanical measurements.

Ceramic reference surface

Structured surface

Recommendation for parameter choice:

- The averaging number should be selected in such a way that a surface area the size of which is comparable to those with mechanical measurements is averaged.

5.1.2.7 Angular Influences

Target tilt angles around both the X and Y-axis of less than 5° in the case of diffuse reflection only cause problems with surfaces that produce strong direct reflection.

These influences must be taken into account especially when scanning profiled surfaces. In principle, angular behavior of triangulation is also subject to the reflective properties of the target surface.

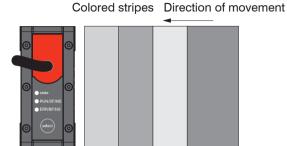
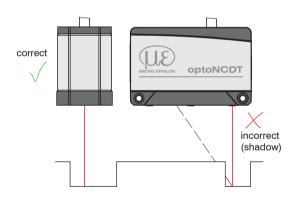




Fig. 9 Measurement error caused by tilt angle with diffuse reflection

5.1.3 Optimizing the Measurement Accuracy

Grinding and milling marks

In case of rolled or polished metals that are moved past the sensor, the sensor plane must be arranged in the direction of the rolling or grinding marks. The same arrangement must be used for color strips.

Fig. 10 Sensor arrangement for ground or striped surfaces

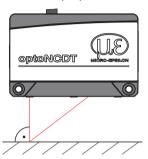

In case of bore holes, blind holes and edges in the surface of moving parts, the sensor must be arranged in such a way that the edge does not obscure the laser spot.

Fig. 11 Sensor arrangement for holes and edges

5.2 Mechanical Fastening, Dimensional Drawing

5.2.1 General

The optoNCDT 1900 sensor is an optical system used to measure in the micrometer range. If the laser beam does not strike the object surface at a perpendicular angle, measurements might be inaccurate.

Ensure careful handling of the sensor during installation and operation. Mount the sensor only to the existing through-bores on a flat surface. Any type of clamping is not permitted. Do not exceed torques.

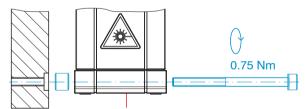
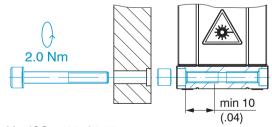
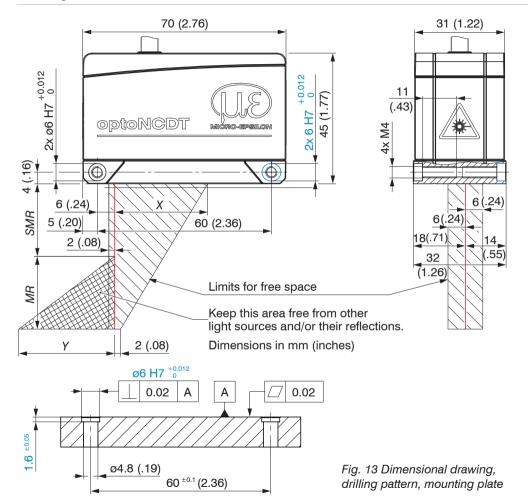

The bearing surfaces surrounding the through-holes (fastening holes) are slightly raised.

Fig. 12 Sensor mounting with diffuse reflection

5.2.2 Mounting


Depending on the installation position, it is recommended to define the sensor position using centering elements and fitting bores. The cylindrical counterbore Ø6 H7 is intended for the position-defining centering elements. This allows for the sensor to be mounted in a reproducible and exchangeable way.

Bolt connection



M3 x 40; ISO 4762, A2-70

Direct fastening

M4; ISO 4762, A2-70 Screwing depth min. 10 mm

Mount the sensor only to the existing through-bores on a flat surface or screw it directly. Any type of clamping is not permitted.

MR	SMR	Χ	Υ
2/2LL	15	23	3
6/6LL	17	27	9
10/10LL	20	33	14
25/25LL	25	33	33
50/50LL	40	36	45
100	50	37	75
200	60	39	130
500	100	43	215

Dimensions in mm

MR = Measuring range

SMR = Start of measuring range

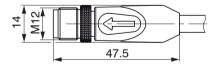
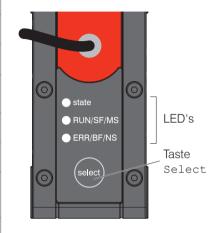



Fig. 14 Dimensional drawing of plug and sensor cable

5.3 Control and Display Elements

LED State /	Color / State	Meaning
green	On	Measuring object within the measuring range
	On	Measuring object in the mid of the measuring range
	On	No distance value available, e.g. target outside the measuring range, too low reflection
yellow	Flashing, 1 Hz	Bootloader
) yellow	Flashing, 8 Hz	Installation active
-	Yellow (briefly), red, yellow, green, off, alter- nating	Ethernet setup mode
0	Off	Laser switched off

Select button	Meaning	
	Switching operating modeResetting to factory setting	

optoNCDT 1900 / EtherNet/IP Page 28

LED I	MS / Color	/ State	Meaning
0		Off	No voltage: If the device is not supplied with voltage, the module status indication is constantly off.
*	green	On	Device is functional: When the device is operating properly, the module status indication lights up constantly green.
	green	Flashing	Standby: If the device has not yet been configured, the module status indication flashes green.
	red	Flashing	Major Recoverable Fault: If the device has detected a Major Recoverable Fault, the module status indication flashes red.
			NOTE: An invalid or incoherent configuration is considered a minor error.
*	red	On	Major Unrecoverable Fault: When the device has detected a Major Unrecoverable Fault, the module status indication will be constantly red.
P	red / green	Flashing	Self test: While the device is performing its power up test, the module status indication flashes green/red.
LED I	NS / Color	/ State	Meaning
0		Off	No voltage, no IP address: When the device has no IP address (or is powered off), the network status indication is constantly off.
	green	Flashing	No connections: An IP address was configured, but no CIP connection was established and no Exclusive Owner Connection had a timeout.
*	green	On	Connected: An IP address has been configured. At least one CIP Connection was established and no Exclusive Owner Connection had a timeout.
) Ø(red	Flashing	Connection timeout: IP address was configured and an Exclusive Owner Connection, for which the device is the target, had a time out. The network status indication will return to permanently green when all Exclusive Owner Connections have been reestablished with timeout.
*	red	On	IP address assigned twice: If the device has detected that its IP address is already in use, the network status indication will be constantly red.
(4)	red / green	Flashing	Self test: While the device is performing its power up test, the network status indication flashes green/red.

5.4 Electrical Connections

5.4.1 RJ45, PoE Connections

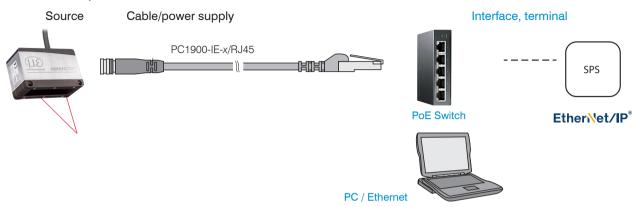


Fig. 15 ILD1900-IE connection example, laser on/off via software

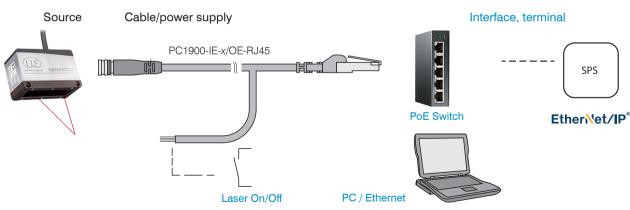


Fig. 16 ILD1900-IE connection example, laser on/off via hardware

optoNCDT 1900 / EtherNet/IP Page 30

5.4.2 RJ45 Connection

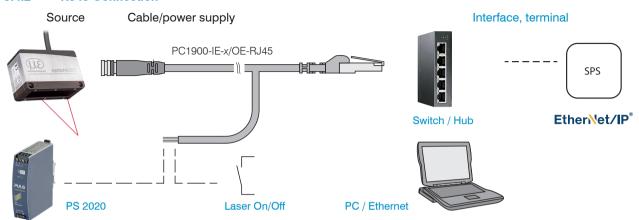


Fig. 17 ILD1900-IE connection example, supply via optional power supply unit, laser on/off via hardware

5.4.3 Pin Assignment

Signal	Wire color PC1900-IE-x/OE-RJ45	Comments		
V ₊	Red	Power supply	11 30 VDC, typ. 24 VDC	
GND	Blue	Reference ground		
Laser on/off +	Black	Cuitabina input	Laser in the sensor is active if both pins are connected to each other.	
Laser on/off -	Violet	Switching input		

Fig. 18 Open end connections, PC1900-IE-x/OE-RJ45

Signal	Pin	Comments		1 8
V ₊	1	Power supply	11 30 VDC, typ. 24 VDC	7
GND	2	Reference ground	77 30 VDC, typ. 24 VDC	
Laser on/off +	7	Curitabile er inn uta		2
Laser on/off -	8	Switching inputs		12-pin plug-in connector, M12, pin side of pigtail cable connector

Fig. 19 Pigtail connections on the sensor

5.4.4 Supply Voltage

Nominal value: 24 V DC (11 ... 30 V, P < 3 W).

Industrial Ethernet with PoF

Sensor supply is via a PoE-capable switch. Phantom powering (PoE) is possible via the

- PC1900-IE-x/RJ45 or
- PC1900-IE-x/OE-RJ45 possible.

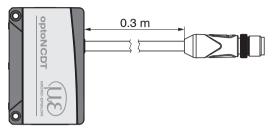
Industrial Ethernet without PoE

Sensor supply is via the PC1900-IE-x/OE-RJ45 cable.

11 1 30 VDC 1 ILD1900-IE	Sensor pin	PC1900-IE-x/OE-RJ45 Color	Power supply
30 VDC ILD1900-IE	1	Red	V ₊
2	2	Blue	GND

As an alternative to PoE, the sensor can be supplied with the optional PS2020 power supply unit, see Fig. 17.

Voltage supply only for measuring devices, not to be used for drives or similar sources of impulse interference at the same time. MICRO-EPSILON recommends using an optional available power supply unit PS2020 for the sensor.


- Only turn on the power supply after wiring has been completed.
- Connect the inputs Pin 1 and Pin 2 at the sensor with a 24V power supply.

5.4.5 Turning on the Laser

The measuring laser on the sensor is switched on via a software command or a switching input. This allows to switch off the sensor for maintenance purposes or similar. Response time: after the laser is switched on, the sensor needs depending on the measuring rate 5 cycles to send correct measured data.

Laser on/off via software, Supply with PoE The measuring laser on the sensor is activated via a software command. Activation using the	Laser on/off via hardware, Supply with PoE The measuring laser on the sensor is activated via a switch or similar. Activation using the	Laser on/off via hardware, Supply without PoE A switching transistor with open collector (for example in an optocoupler), a relay contact or a digital TTL or HTL signal are suitable for switching. Activation using the
PC1900-IE-x/OE-RJ45 cable is possible.	PC1900-IE-x/OE-RJ45 cable is possible. PC1900-IE-x/OE-RJ45 ILD1900-IE Black OGND 8 Violet No external resistance is required for curre violet wires.	PC1900-IE-x/OE-RJ45 cable is possible. Type 1 Type 2 Type 3 PC1900-IE-x/OE-RJ45 ILD1900-IE V H Black Violet Vi

5.4.6 Plug-In Connection, Supply and Output Cable

ILD1900-IE with pigtail

- Do not bend the sensor cable more tightly than 30 mm (fixed installation) or 75 mm (permanently flexible).
- The firmly connected sensor cable is drag-chain suitable.
 - Unused open cable ends must be insulated to protect against short circuits or sensor malfunctions.

MICRO-EPSILON recommends the use of the PC1900-IE drag-chain compatible standard connection cables from the optional accessories, see Chap. A 1.

- Fasten the plug connection of the cable plug and socket when using a drag-chain compatible PC1900-IE sensor cable.
- Avoid excessive pull on the cables. If a cable of over 5 m in length is used and it hangs vertically without being secured, make sure that some form of strain relief is provided close to the plug connection.
- Do not twist a mated connection.
- Connect the cable shield to the potential equalization (PE, protective earth conductor) on the evaluator (control cabinet, PC housing) and avoid ground loops.
- Never lay signal lines next to or together with power cables or pulse-loaded cables (e.g., for drives or solenoid valves) in a single bundle or duct. Always use separate ducts.

optoNCDT 1900 / EtherNet/IP Page 35

6. Operation

6.1 Getting Ready for Operation

- Mount the optoNCDT 1900 according to the assembly instructions, see Chap. 5.
- Connect the sensor to the downstream display or monitoring units and to the voltage supply, if no PoE is used.

The laser diode in the sensor is only activated

- due to software command or
- if the black and violet wires of the PC1900-IE-x/OE-RJ45 are connected, see Chap. 5.4.5.

Once the power supply has been switched on, the sensor runs through an initialization sequence. Already within the first second a connection to the sensor can be established and the measurement can be started.

During the first three seconds, an internal function check in the sensor is indicated by the Status LED, which lights up in the colors red, yellow and green one after another.

Initialization takes a maximum of 3 seconds. Within this period, only the reset or the bootloader command is executed via the Select button.

The sensor typically requires a warm-up time of 20 min for reproducible measurements.

If the State LED is off, the laser light source has been switched off.

If all LEDs are off, no power is being supplied.

6.2 Operation via Web Interface, Ethernet

6.2.1 General

The sensors start with the last stored operating mode. Standard is EtherNet/IP.

An ILD1900-IE with EtherNet/IP is delivered in DHCP mode. A DHCP server is required, see Chap. A 3, to assign an IP address to the sensor. Subsequently, it is also possible to assign a static IP address.

A web server is implemented in the sensor; the web interface displays, among other things, the current settings of the sensor. Operation is only possible while there is an Ethernet connection to the sensor.

EtherNet/IP Operation

Assign an IP address to the sensor.

With EtherNet/IP the web interface can be accessed without switching to the Ethernet setup mode.


You can find an example of this in the appendix, see Chap. A 3.

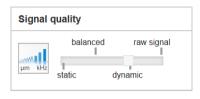
Start your web browser and type the IP address of the sensor into the address bar.

6.2.2 Access via Web Interface

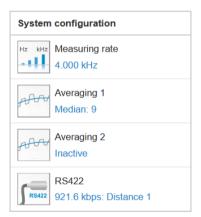
Start the sensor web interface, see Chap. 6.2.1.

Interactive web pages you can use to configure the sensor are now displayed in the web browser. The sensor is active and supplies measurement values. Real-time measurement is thus not guaranteed with the web interface. The currently running measurement can be controlled using the function buttons in the Chart type.

The horizontal navigation includes the functions below:


- The search function permits timesaving access to functions and parameters.
- Home. The web interface automatically starts in this view with measurement chart, Configuration and Signal quality.
- Measurement configuration.
 Allows a selection of predefined measurement settings.
- Settings. This menu includes all sensor parameters, see Chap. 7.
- Measurement chart.

 Measurement chart or video signal.
- Info. Includes information about the sensor, such as measuring range, serial number and software status.

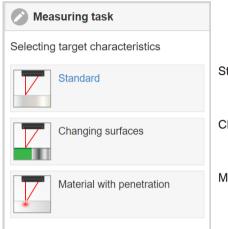

Fig. 20 First page after web interface has been accessed in Ethernet mode

For configuration, you can switch between the video signal and a display of the measured values over time. The appearance of the websites can change dependent of the functions. Dynamic help text with excerpts from the operating instructions supports you during sensor configuration.

Depending on the selected measuring rate and the PC used, measured values may be reduced in the display. That is, not all measured values are transmitted to the web interface for display and saving.

Averaging	Description
Balanced Median with 9 values + Moving with 64 values	In the Signal quality section you can switch between four predefined basic settings (static, balanced, dynamic and without averaging). The reaction in the chart and system
Raw signal, without averaging	configuration is immediately visible.
Static Median with 9 values + Moving with 128 values	If the sensor starts up with a user-defined measurement setting (setup), see Chap. 7.7.3, the signal quality cannot be changed.
Dynamic Median, 9 values	The Signal quality function can be used to specify the predefined presets more precisely for the individual measurement task.

The System configuration section shows the current settings for Measuring rate, Averaging and RS422 in blue. You can change the settings via the Signal Quality slider or in the Settings tab.


The Chart Type area enables you to switch between the graphical representation of a measurement values over time or the video signal.

After parameterization, store all settings permanently in a parameter set so that they are available again the next time the sensor is switched on.

To do this, use the Save settings button.

6.2.3 Measurement Task Selection

Conventional measurement configurations (presets) for various target surfaces are saved in the sensor. They allow for a quick start in the individual measuring task. Selecting a preset, which is suitable for the target surface activates a predefined configuration of settings that will produce the best results for the material selected.

Standard Ceramics, metal

Changing surfaces ¹ PCBs, hybrid metal

Material with penetration ¹ Plastics (Teflon, POM),

materials with strong penetration depth

of the laser

1) Available for the ILD1900-2/6/10/25/50 sensor models

optoNCDT 1900 / EtherNet/IP

6.2.4 Display of Measurement Values in the Web Browser

Display the measurement values in the Measurement chart tab.

Fig. 21 Measurement (distance measurement) web page

- 1 The LED visualizes the status of the transmission of measured values:
 - green: transmission of measured values is running.
 - yellow: waiting for data in trigger mode
 - gray: transmission of measured values stopped

Data queries are controlled by using the Play/Pause/Stop/Save buttons of the measured values that were transmitted

Stop pauses the chart; you can still use the data selection and zoom functions. Pause stops the recording. Save opens the Windows selection dialog for the file name and storage location to save the last 10,000 values in a CSV file (separation using semicolon).

Click the button (Start) to display the measurement results.

Operation

- 2 To scale the axis in the graph for the measured values (y-axis), you can use Auto (= automatic scaling) or Manual (= manual scaling).
- 3 The search function permits time-saving access to functions and parameters.
- 4 The text boxes above the graphic display the current values for distance, exposure time, current measuring rate, display rate and time stamp.
- Mouseover function. When the chart has been stopped and you move the mouse over the graph, points on the curve are marked with a circle and the associated values are displayed in the text boxes above the graph. Peak intensity is also updated.
- 6 The x-axis can be scaled in the input field under the time axis.
- Scaling the x-axis: During an ongoing measurement, you can use the left-hand slider to enlarge the entire signal (zoom). When the chart has been stopped, the right-hand slider can also be used. You can also move the zoom window with the mouse in the center of the zoom window (four-sided arrow).
- 8 Select a chart type: measurement values or video signal

6.2.5 Video Signal Display in the Web Browser

Display the video signal in the Video section of the Chart type selection.

The graph displayed in the large chart area on the right represents the video signal and the receiving row. The video signal displayed in the chart area displays the intensity distribution of the pixels in the receiving row. Left 0 % (small distance), and right 100 % (large distance). The corresponding measured value is marked by a vertical line (peak marking).

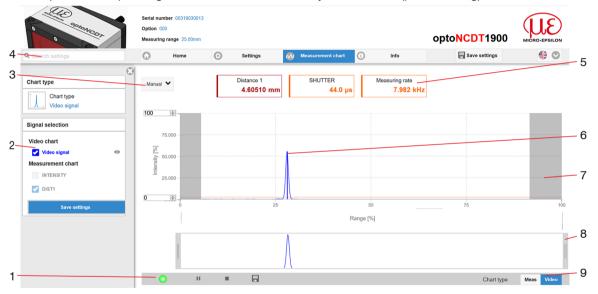


Fig. 22 Video signal web page

- 1 The LED visualizes the status of the transmission of measured values:
 - green: transmission of measured values is running.
 - yellow: waiting for data in trigger mode
 - gray: transmission of measured values stopped

Data queries are controlled by using the Play/Pause/Stop/Save buttons of the measured values that were transmitted Stop pauses the chart; you can still use the data selection and zoom functions. Save opens a Windows selection dialog for the file name and storage location to save the video signal in a CSV file.

- Click on the button (Start) to display the video signal.
- 2 In the left-hand window, the video channels to be displayed can be switched on or off during or after the measurement. Inactive curves are grayed out and can be added by clicking on the check mark. If you want to have displayed one single signal, click on its name.
 - Peak marking (vertical blue line), corresponds to the evaluated measured value
 - Linearized measuring range (limited by gray hatching), not changeable
 - Masked range (limited by light blue hatching), changeable
- 3 To scale the intensity axis in the graph for the measured values (y-axis), you can use Auto (= automatic scaling) or Manual (= manual scaling).
- 4 The search function permits time-saving access to functions and parameters.
- 5 The text boxes display the current values for distance, exposure time, current measuring rate, display rate and time stamp.
- 6 Mouseover function. When the chart has been stopped and you move the mouse over the graph, points on the curve are marked with a circle and the associated intensity is displayed. The corresponding x position is displayed in % above the graph window.
- 7 The linearized range is in the graph between the gray shadows and can not be changed. Only peaks of which the centers are in this range can be evaluated. The masked range may be limited if needed. Then an additional pale blue shadow limits the range on the right and on the left side. The peaks remaining in the resulting range are used for evaluation, see Chap. 7.4.5.

- 8 Scaling the x-axis: You can zoom into the graph shown above with the two sliders on the right and left in the lower overall signal section. You can also move it to the side with the mouse in the center of the zoom window (four-sided arrow).
- 9 Select a chart type: measurement values or video signal

The display shows how the adjustable measurement task (target material), peak selection and possible interfering signals due to reflections or similar affect the video signal. There is no linear relationship between the position of the peak in the video signal display and the output measured value.

6.3 Parameterization via EtherNet/IP

EtherNet/IP includes a mechanism for parameterizing the adapters. Objects are defined for this purpose, which contain the parameters for configuring the sensor. For details about reading and changing objects, please refer to the description of your PLC.

An overview of the available objects can be found in the manufacturer specific objects section, see Chap. 8.4.2.

6.4 Timing, Measurement Value Cycles

The sensor needs five internal cycles for measuring and processing: The measurement value N is transmitted to the EtherCAT master in the fifth cycle.

Measurement, processing and transmission take place in parallel, so that the next measurement value (N+1) is transmitted in the following cycle.

6.5 Operation via Membrane Key

You can restore the factory setting with the Select button.

Reset to factory setting does not change the IP address.

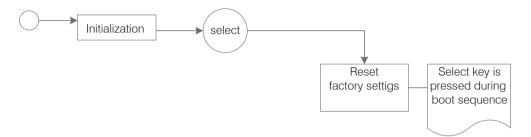


Fig. 23 Process: calling up the factory settings or boot loader via Select button

7. Setting Sensor Parameters

7.1 Preliminary Remarks about the Setting Options

There are two ways to parameterize the optoNCDT 1900:

- via web browser and sensor web interface,
- by means of EtherNet/IP and the manufacturer-specific objects, see Chap. 8.4.2.
- If you do not permanently save the parameter set in the sensor, the settings are lost when the sensor is turned off. Alternatively values for the EtherNet/IP objects can be stored in the project of your PLC software and transferred to the sensor when the system is started.

7.2 Parameters Overview

The following parameters can be set or changed in the optoNCDT 1900, see Settings tab.

Inputs	Laser power
Data Recording	Measurement task, measuring rate, evaluation range, exposure mode, peak selection
Signal Processing	Averaged measurement 1/2, zeroing/mastering
System Settings	Web interface unit, Load & Save, Import & Export, Reset sensor (factory setting)

7.3 Inputs

Change to the Inputs menu in the Settings tab.

Laser power	Full	Full power for standard surfaces	The laser light source is
	Medium	Optimized power for strongly reflecting surfaces and small measuring ranges	only enabled if pin 7 is connected to pin 8, see
	Reduced	Min. power for service purposes	Chap. 5.4.5.
	Off	Laser is off	
Synchronization with EtherNet/IP		In case several sensors should measure the you can synchronize the sensors with each the synchronization section, see Chap. 8.10	other. Details can be found in

Pay attention to the signal intensity when switching the laser power. You achieve best possible results with a signal intensity of 25 ... 50 %.

Value

7.4 Data Recording

7.4.1 Preliminary Remarks

On the Settings tab, switch to the Data recording menu.

According to the previous setting in the Chart type area, a graph is displayed in the right part of the display. The diagram is active and all settings become immediately visible. Notes on the chosen settings are displayed below.

In the left area, the Data recording menus are displayed.

7.4.2 Measurement Configuration

Details dazu finden Sie in der Bedienung des Webinterfaces, see Chap. 6.2.3.

7.4.3 Measuring Rate

The measuring rate indicates the number of measurements per second.

Select the required measuring rate.

Measuring	250 Hz / 500 Hz / 1 k	Hz /	Use a high measuring rate for bright and mat measuring objects. Use a low
rate	2 kHz 4 kHz 8 kHz	/ 10 kHz	measuring rate for dark or shiny measuring objects (e.g. black painted surfaces)
	free measuring rate	11//	to improve the measurement result. The max. measuring rate depends on the fieldbus and the bus cycle time.

At a maximum measuring rate of 10 kHz, the CMOS element is exposed 10,000 times per second. The lower the measuring rate, the longer the maximum exposure time.

The measuring rate is factory set to 4 kHz.

7.4.4 Reset Counter

You can reset the counter readings for the measured values, timestamps, trigger event counters and trigger value counters. It is not possible to display the counter readings in the web interface.

Fields with gray background require a selection.

Value

Fields with dark border require entry of a value.

7.4.5 ROI Masking

Masking limits the evaluating range (ROI - Region of Interest) for the distance calculation in the video signal. This function is used in order to e.g. suppress interfering reflections or ambient light.

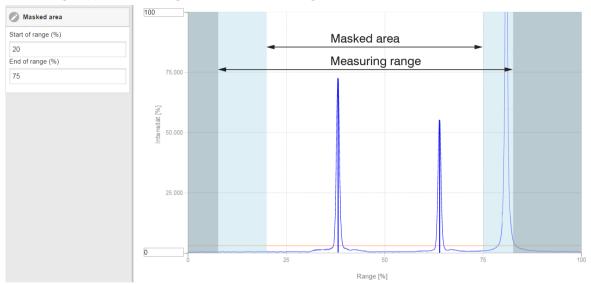
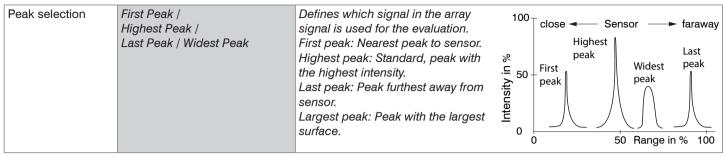


Fig. 24 Light-blue regions delimit the region of interest

The exposure control optimizes the peaks in the evaluation range. Therefore, small peaks can be optimally adjusted when a high interference peak is outside the evaluation range.


Value Fields with dark border require entry of a value.

optoNCDT 1900 / EtherNet/IP

7.4.6 **Exposure Mode**

Exposure mode	Automatic mode	Standard / Intelligent control Background supp	pression	Standard: The sensor itself determines the optimal exposure time. The sensor adjusts the signal intensity to approx. 50%. Intelligent control: This intelligent algorithm is particularly advantageous for measurements on moving objects or in the case of transitions between different materials. Background suppression: Suppresses interference caused by ambient light. This significantly improves the ambient light tolerance of the sensor. The output rate of the sensor is halved.
	Manuel mode	Exposure time in μ s	Value	In manual mode, with the video signal shown, the exposure time is set by the user. Vary the exposure time in order to obtain a signal intensity of up to 95%.

7.4.7 Peak Selection

If a measuring object contains multiple transparent layers, a correct measurement result is determined only for the first peak.

Value

7.5 Signal Processing

7.5.1 Preliminary Remarks

Change to the Signal processing menu in the Settings tab.

According to the previous setting in the Chart type area, a graph is displayed in the right part of the display. The diagram is active and all settings become immediately visible. Notes on the chosen settings are displayed below.

In the left area, the Signal processing menus are displayed.

7.5.2 Averaging

7.5.2.1 General

Averaging is recommended for static measurements or slowly changing measured values. The Averaging 1 function is executed before the Averaging 2 function.

Measurement	No averaging			No measurement value averaging.
averaging	Moving N values	2 / 4 / 8 4096	Value	Specify the type of averaging. The averaging number N
	Recursive N values	2 32767	Value	indicates how many consecutive values are averaged in the sensor.
	Median N values	3/5/7/9	Value	33,133,1

Measurement averaging is performed after the distance values have been calculated, and before they are issued through the relevant interfaces.

Averaging

- improves the resolution,
- allows masking individual interference points or
- "smoothes" the measurement result.

Linearity is not affected by averaging.

The average values are continuously recalculated with each measurement. The desired averaging depth is only achieved after the number of recorded measurement values corresponds at least to the averaging depth.

Fields with gray background require a selection.

Value Fields with dark border require entry of a value.

The defined type of average value and the averaging number must be stored in the sensor so that they are retained after switching off.

Averaging has no effect on the measuring rate or data rate in case of digital measurement value output. The averaging numbers can also be programmed via the digital interfaces. The optoNCDT 1900 sensor is delivered with "Median 9" as factory settings, i.e. median averaging over 9 measurement values.

Depending on the type of average and the number of averaged values, different transition response times result thereof, see Chap. 6.4.

7.5.2.2 Moving Average

The definable number N for successive measurements (window width) is used to calculate the arithmetic average M_{mov} according to the following formula:

$$M_{\mathrm{mov}} = \frac{\sum\limits_{k=1}^{N} MV\left(k\right)}{N}$$
 $M_{\mathrm{mov}} = \frac{N}{N}$
 $M_{\mathrm{mov}} = \frac{MV}{N}$
 $M_{\mathrm{mov}} = \text{Average value or output value}$

Method:

Each new measured value is added, the first (oldest) measured value is removed from the averaging (from the window) again. In this way, it is possible to achieve short transition response times with measured value jumps.

Example: N = 4

... 0, 1,
$$[2, 2, 1, 3]$$
 ... 1, 2, $[2, 1, 3, 4]$ Measurement values
$$\frac{2, 2, 1, 3}{4} = M_{\text{mov}}(n)$$

$$\frac{2, 1, 3, 4}{4} = M_{\text{mov}}(n+1)$$
 Output value

Note:

For the moving averaging in the optoNCDT 1900, only powers of 2 are permitted for the averaging number *N*. Range of values for the averaging number *N* is 1 / 2 / 4 / 8 ... 4096.

7.5.2.3 Recursive Average

Formula:

$$M_{\text{rec}} (n) = \frac{MV_{\text{(n)}} + (N-1) \times M_{\text{rec (n-1)}}}{N}$$
 Mv Measurement value, N Averaging number, n Measured value index M_{rec} Average value or output value

Method:

The weighted value of each new measured value MV(n) is added to the sum of the previous average values M_{rec} (n-1).

Note:

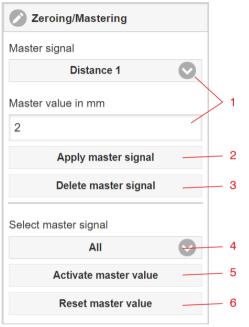
The recursive averaging enables very strong smoothing of the measured values, however it needs very long settling times for measured value jumps. The recursive average value shows low-pass behavior. The range of values for the averaging number N is 2 ... 32767.

7.5.2.4 Median

A median value is formed from a preselected number of measurements.

Methods:

The incoming measured values (3, 5, 7 or 9 measurement values) are also sorted again after each measurement. The median value is then output as the median. 3, 5, 7 or 9 measured values are taken into account for the calculation of the median, i.e. there is no median 1.


Note:

This averaging type suppresses individual interference pulses. However, the smoothing of the measured value curves is not very strong.

Example: mean value from five readings

... 0 1
$$_{1}$$
2 4 5 1 3 $_{1}$ \rightarrow Sorted measurement values: 1 2 $\boxed{3}$ 4 5 Median $_{(n)}$ = 3 ... 1 2 $_{1}$ 4 5 1 3 5 $_{1}$ \rightarrow Sorted measurement values: 1 3 $\boxed{4}$ 5 5 Median $_{(n+1)}$ = 4

7.5.3 Zeroing, Mastering

Use zeroing and setting masters to define a target value within the measuring range. This shifts the output range. This feature can be useful, for example, when several sensors carry out thickness and planarity measurements when placed next to one another or when replacing a sensor.

Mastering (setting masters) is used to compensate for mechanical tolerances in the sensor measurement setup or to correct chronological (thermal) changes to the measuring system. The master value, also called calibration value, is defined as the target value.

The master value is the reading that is issued as result of measuring a master object. Zeroing is when you set a master with 0 (zero) as the master value.

- $\overset{\bullet}{l}$ Mastering or Zeroing requires a target object to be present in the measuring range.
 - Mastering or Zeroing the digital output and the display equally.
- 1 Selects a signal for the function, assigns master value
 - Saves master value in volatile memory. 1
- Deletes master value in volatile memory.
- 4 Selects a specific signal or function
- 5 Starts function
- 6 Ends function, returns to absolute measurement.

Mastering / Zeroing:

- Place target and sensor into the desired positions.
- Send the Master command (EtherCAT) or click the Activate master value button.

After setting the master, the controller will issue new readings that relate to the master value. The Reset master value button resets the system to the state before mastering.

1) The Save settings function permanently saves the master value to a setup.

7.6 Digital Output EtherNet/IP

7.6.1 Values, Ranges

The digital measurement values are issued as unsigned digital values (raw values). 16 or 18 bits can be transferred per value. Below you will find a compilation of the output values and the conversion of the digital value.

Value	Length	Varial	bles	Value range	Formula
Distance 18 Bit	18 Bit	х	Digital value	[0; 230604]	
		MR	Measuring range in mm	{2/6/10/25/50/100/200/500}	$d = \frac{x - 98232}{MR}$
		d	Distance in mm	without mastering [-0.01 <i>MR</i> ; 1.01 <i>MR</i>]	$d = \frac{d}{65536}$
				with mastering [-2MR; 2MR]	
Exposure time	16 Bit	х	Digital value	[1000; 40000]	$ET = \frac{1}{x}$
	BZ	Exposure time in μ s	[100; 4000]		
Intensity	16 Bit	x	Digital value	[0; 1023]	$I = \frac{100}{1} \times 100$
		1	Intensity in %	[0; 100]	$T = \frac{1}{1023} \times \frac{1}{1023}$
Sensor status	18 Bit	Х	Digital value	[0; 242143]	Bit 0 (LSB): peak starts before ROI
			Bit coding	[0; 1]	Bit 1: peak ends after ROI
			-		Bit 2: no peak found
		SMR	Start of measuring rar	nge	Bit 5: Distance before SMR (extended)
		EMR	End of measuring ran	ge	Bit 6: Distance after EMR (extended)
					Bit 15: Measurement value is triggered
Measured Value Counter	18 Bit	X	Digital value	[0; 262143]	

optoNCDT 1900 / EtherNet/IP

Setting Sensor Parameters

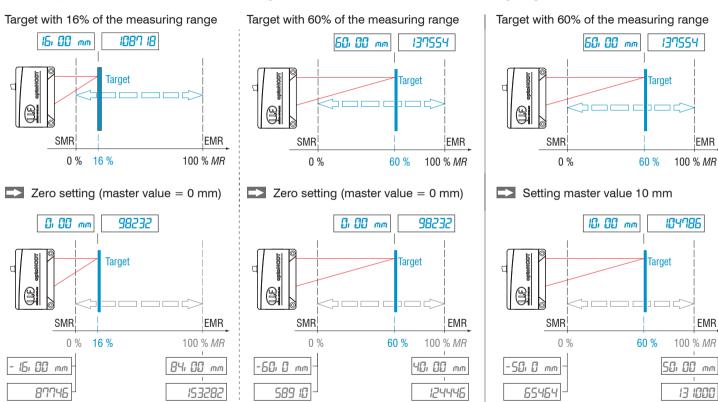
Timestamp	32 Bit	X	Digital value	[0; 4294967295]	_ 1
		t	Time stamp in μ s	[0; 1h11m34.967s]	$t = \frac{1000}{1000} x$
Unlinearized center of	18 Bit	Х	Digital value	[0; 262143]	$US = \frac{100}{} x$
gravity		US	Center of gravity in %	[0; 100]	262143
Measurement frequency	18 Bit	X f	Digital value Frequency in Hz	[2500; 100000]	$f = \frac{x}{10}$

State information transferred in the distance value

Distance value Description

262076 There is no peak present

262077 Peak is before measuring range (MR)
262078 Peak is after measuring range (MR)


262080 Measurement value cannot be evaluated

262081 Peak is too wide

262082 Laser is off

7.6.2 Behavior of the Digital Output

Master values based on the zeroing or master function are coded with 18 bits. The master can assume twice the measuring range. The examples demonstrate the behavior of the digital value with an ILD1900-100-IE, measuring range 100 mm.

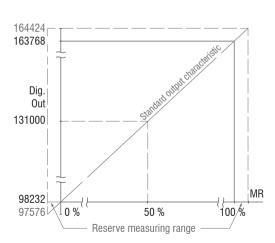
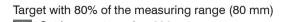



Fig. 25 Digital values without zeroing or mastering optoNCDT 1900 / EtherNet/IP

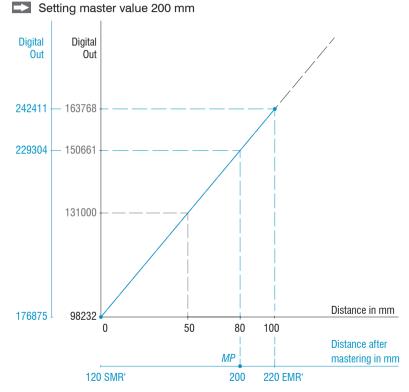


Fig. 26 Digital values 1900-100-IE after mastering with 200 mm master value

Page 60

7.7 System Settings

7.7.1 General

After programming, save all settings permanently to a parameter set so that they will be available again the next time you switch on the sensor.

7.7.2 Unit, Language

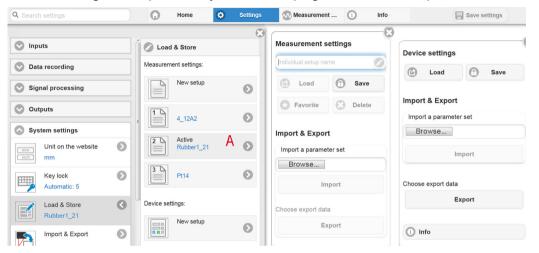

The web interface promotes the units millimeter (mm) and inch when displaying measuring results. You can choose German or English in the web interface. You can change the language in the menu bar.

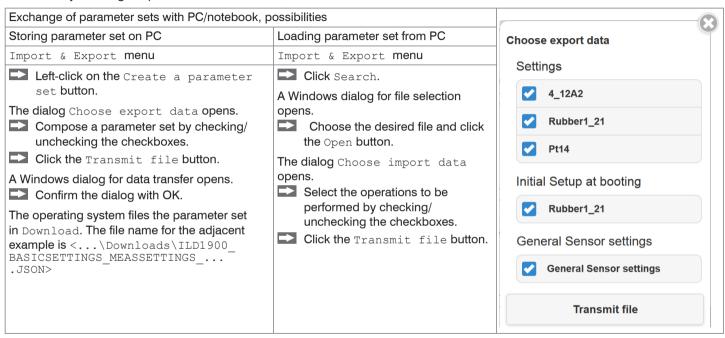
Fig. 27 Language selection in the menu bar

7.7.3 Load & Save

All sensor settings can be permanently saved in user programs, so-called setups, in the sensor.

For details about measurement and device settings, please refer to the section reset sensor, see Chap. 7.7.5.

Fig. 28 Managing user settings


How to manage the sensor settings, options					
Saving the Settings	Activating existing setup	Saving changes in active setup	Defining setup after booting		
New setup menu	Load & Save menu	Menu bar	Load & Save menu		
Enter the name for the setup into field Individual setup name	Click on the desired setup with the left mouse button, area A.	Click the	Click on the desired setup with the left mouse button, area A.		
e.g. Rubber 1_21 and click the Save button.	The Measurement settings dialog opens. Click the Load button.	button.	The Measurement settings dialog opens. Click the Favorite button.		

optoNCDT 1900 / EtherNet/IP

Exchange setups with PC/notebook, possibilities			
Saving setup on PC	Load setup from PC		
Load & Save menu	Load & Save menu		
Click on the desired setup with the left mouse button, area A. The Measurement settings dialog opens. Click Export.	Click New setup with the left mouse button. The Measurement settings dialog opens. Click Search. A Windows dialog for file selection opens. Choose the desired file and click the Open button. Click the Import button.		

7.7.4 Import, Export

A parameter set includes the current settings, setup(s) and the initial setup when booting the sensor. The Import & Export menu enables easy exchange of parameter sets with a PC/notebook.

In order to avoid that an already existing setup is overwritten unintentionally during import, an automatic security request is carried out, see adjacent figure.

Options during import

optoNCDT 1900 / EtherNet/IP Page 64

7.7.5 Reset Sensor

Reset Sensor	Device settings	Button	Clears the settings for baud rate, language, unit, key lock and echo mode
			and loads the default parameters.
	Measurement setting	Button	Clears the settings for measuring rate, trigger, evaluation range, peak selection, error handling, averaging, zeroing/mastering, data reduction and setups. Loads the 1st preset.
	Reset all	Button	Clears the sensor settings, measurement settings, access authorization, password and setups. Loads the 1st preset.
	Reboot sensor	Button	Reboots the sensor with the settings from the favorite setup, see Chap. 7.7.4.

7.7.6 Boot Mode

The Boot Mode function including the switch to Ethernet Setup Mode is required for ILD1900-IE sensors with EtherCAT or Profinet. An ILD1900-IE sensor with EtherNet/IP does not support the Boot Mode function. It is not recommended to use it.

The sensor must have an IP address with it the web interface and a PLC can access the sensor in parallel via Ethernet (TCP/IP and UDP protocols) see Chap. A 3.

Value

8. EtherNet/IP. Documentation

8.1 Preliminary Remarks

The sensor starts with the last stored operating mode. Standard is EtherNet/IP.

The EtherNet/IP mode, as well as the Ethernet setup mode, allow easy programming of a sensor, see Chap. 6.2.1, see Chap. 7.

8.2 Saving the Settings, Continuing EtherNet/IP Operation

Go to Settings > System settings > Load & Save or click the Save settings button, see Chap. 7.7.3.

The sensor now also saves the settings to the objects for use in EtherNet/IP operation.

Continue working in your PLC environment.

8.3 General

EtherNet/IP is an Ethernet-based fieldbus, which is based on the TCP and UDP protocols, developed by the Open DeviceNet Vendor Association (ODVA). The IP in EtherNet/IP stands for Industrial Protocol. The Common Industrial Protocol (CIP) is used as the application protocol. CIP decides between

- Implicit Messages: time-critical, cyclic process data; transmission via UDP,
- Explicit Messages: acyclic demand data; transmission is via TCP.

Explicit messages work according to the client/server model and Implicit Messages work according to the producer/consumer model. Both require a CIP connection. It is also possible to exchange Explicit Messages without a CIP connection via so-called Unconnected Explicit Messages.

CIP (Common Industrial Protocol)		
Implicit Messages	Explicit Messages	
UDP	TCP	
I/O-Connections	Explicit Messaging Connections	
Exchange of process data from a producer to	Exchange of data between two devices	
one or more consumers	according to the client/server model	

Fig. 29 CIP stack and transport of data according to the ISO/OSI reference model

optoNCDT 1900 / EtherNet/IP

EtherNet/IP distinguishes two types of devices: EtherNet/IP scanners and EtherNet/IP adapters. The ILD1900-IE sensor with EtherNet/IP is an EtherNet/IP adapter. To exchange data with an EtherNet/IP adapter, an EtherNet/IP scanner is required.

8.4 Explicit Messaging

CIP is an object-oriented concept, which is based on object-oriented programming. An Ethernet/IP device is modeled by a set of CIP objects. An object consists of a class, of which in turn one or more instances may exist. Classes and instances still have attributes. Attributes are used to configure the EtherNet/IP device which is accessed by reading or writing. An object is addressed via the Class ID, Instance ID and Attribute ID. It is also important how an object is accessed, e.g. whether it is read or written. This information is defined by the service code.

Object 1	Object 2	Object n		
Class (Class-ID)	Attribute 1 (Attribute-ID) Attribute n	read/write		
Instance 1 (Instance-ID)	Attribute 1 (Attribute-ID) Attribute n	read/write		
Instance n	Attribute 1 Attribute n	read/write		

Fig. 30 Example Explicit Message with the information about Class ID, Instance ID, Attribute ID and Service Code

The objects are distinguished between

- standard objects, which always have the same structure even with different devices, and
- manufacturer-specific objects, which have a different structure depending on the manufacturer.

The standard objects have a Class ID in the range from 0x000 to 0x063 or from 0x0F0 to 0x2FF. The Class ID of manufacturer specific objects ranges from 0x064 to 0x0C7 or 0x300 to 0x4FF.

8.4.1 Standard Objects

8.4.1.1 **Overview**

Class ID	Name
0x01	Identity Object
0x02	Message Router Object
0x04	Assembly Object
0x06	Connection Manager
0x47	DLR Object
0x48	QoS Object
0xF5	TCP/IP Interface Object
0xF6	Ethernet Link Object
0x43	Time Sync Object
0x109	LLDP Management Object

Fig. 31 Overview of standard objects

8.4.1.2 Object 0x01h: Identity

Class attributes

Attribute ID	Name	Access	Description	Data type
1	Revision	Get	Revision of this object	UINT
2	Max. Instance	Get	Maximum instance number of an object currently created in this class level of the device	UINT
3	Number of Instances	Get	The number of instances currently created in this class	UINT
6	Maximum ID Number Class Attributes	Get	The attribute ID number of the last class attribute of the class definition implemented in the device.	UINT
7	Maximum ID Number Instance Attributes	Get	The attribute ID number of the last instance attribute of the class definition implemented in the device.	UINT

Instance attributes

Attribute ID	Name	Access	Description	Data type
1	Vendor ID	Get	Vendor Identification	UINT
2	Device Type	Get	Indication of general type of product	UINT
3	Product Code	Get	Identification of a particular product of an individual vendor	UINT
4	Revision	Get	Revision of the product	STRUCT 1
5	Status	Get	Summary status of device	WORD
6	Serial Number	Get	Serial number of device	UDINT
7	Product Name	Get	Human readable identification	SHORT_STRING
8	State	Get	Present state of the device	USINT

¹⁾ More details for the data types STRUCT can be found in the THE CIP NETWORKS LIBRARY, Volume 1/2.

Services

Service Code	Name		Access	Description
		Class level	Instance level	
0x01	Get Attribute All	Yes	Yes	Retrieve all attribute values
0x05	Reset	Yes	Yes	Reset the decvice
0x4B	Flash LEDs	No	Yes	Flash the device's LEDs for identification
0x0E	Get Attribute Single	Yes	Yes	Retrieve attribute value
0x10	Set Attribute Single	Yes	Yes	Modify attribute value

You can reset the sensor to factory settings via the service Reset (0x05 hex) of instance 1 or directly via the class of the Identity Object (0x01 hex). The reset service contains the parameter Reset Type of data type USINT, for which the following values are valid:

- 0 Performs a power cycle
- 1 Resets the sensor to factory settings and then performs a power cycle
 - After resetting the sensor to factory settings, it is configured to DHCP.

8.4.1.3 Object 0x02 Message Router

Class Attributes

Attribute ID	Name	Access	Description	Data type
1	Revision	Get	Revision of this object	UINT
2	Max. Instance	Get	Maximum instance number of an object currently created in this class level of the device	UINT
3	Number of Instances	Get	The number of instances currently created in this class	UINT
6	Maximum ID Number Class Attributes	Get	The attribute ID number of the last class attribute of the class definition implemented in the device.	UINT
7	Maximum ID Number Instance Attributes	Get	The attribute ID number of the last instance attribute of the class definition implemented in the device.	UINT

Instance attributes

This object does not provide any instances.

Services

Service Code	Name	Access		Description
		Class level Instance level		
0x0E	Get Attribute Single	Yes	Yes	Retrieve attribute value
0x10	Set Attribute Single	No	Yes	Modify attribute value

optoNCDT 1900 / EtherNet/IP Page 71

8.4.1.4 Object 0x04 Assembly

Class Attributes

Attribute ID	Name	Access	Description	Data type
1	Revision	Get	Revision of this object	UINT
2	Max. Instance	Get	Maximum instance number of an object currently created in this class level of the device	UINT
3	Number of Instances	Get	The number of instances currently created in this class	UINT
6	Maximum ID Number Class Attributes	Get	The attribute ID number of the last class attribute of the class definition implemented in the device.	UINT
7	Maximum ID Number Instance Attributes	Get	The attribute ID number of the last instance attribute of the class definition implemented in the device.	UINT

Instance attributes

Attribute ID	Name	Access	Description	Data type
1	Number of member	Get	Number of members in List	UINT
2	Member	Get	Member list	STRUCT 1
3	Object Data	Get/Set	Current process data	Array of OCTET
4	Object Size	Get	Process data size in number of bytes	UINT

Attributes 1 and 2 are not available for configuration assembly instances.

Services

Service Code	Name	Access		Description		
		Class level	Instance level			
0x0E	Get Attribute Single	Yes	Yes	Retrieve attribute value		
0x10	Set Attribute Single	No	Yes	Modify attribute value		
0x18	Get Member	No	Yes	Get a member of instance attribute 2		

¹⁾ More details for the data types STRUCT can be found in the THE CIP NETWORKS LIBRARY, Volume 1/2. optoNCDT 1900 / EtherNet/IP

8.4.1.5 Object 0x06 Connection Manager

Class Attributes

Attribute ID	Name	Access	Description	Data type
1	Revision	Get	Revision of this object	UINT
2	Max. Instance	Get	Maximum instance number of an object currently created in this class level of the device	UINT
3	Number of Instances	Get	The number of instances currently created in this class	UINT
6	Maximum ID Number Class Attributes	Get	The attribute ID number of the last class attribute of the class definition implemented in the device.	UINT
7	Maximum ID Number Instance Attributes	Get	The attribute ID number of the last instance attribute of the class definition implemented in the device.	UINT

Instance Attributes

This object does not provide any instances.

Services

Service Code	Name	Access		Description
		Class level	Instance level	
0x0E	Get Attribute Single	Yes	Yes	Retrieve attribute value
0x10	Set Attribute Single	No	Yes	Modify attribute value
0x54	Forward Open	No	Yes	Open new connection
0x4E	Forward Close	No	Yes	Close connection

8.4.1.6 Object 0x47 Device Level Ring DLR

Class Attributes

Attribute ID	Name	Access	Description	Data type
1	Revision	Get	Revision of this object	UINT
2	Max. Instance	Get	Maximum instance number of an object currently created in this class level of the device	UINT
3	Number of Instances	Get	The number of instances currently created in this class	UINT
6	Maximum ID Number Class Attributes	Get	The attribute ID number of the last class attribute of the class definition implemented in the device.	UINT
7	Maximum ID Number Instance Attributes	Get	The attribute ID number of the last instance attribute of the class definition implemented in the device.	UINT

Instance Attributes

Attribute ID	Name	Access	Description	Data type
1	Network Topology	Get	Current network topology	USINT
2	Network Status	Get	Current network status	USINT
10	Active Supervisor	Get	Active Supervisor Address	STRUCT 1
12	Capability Flags	Get	DLR capability of the device	DWORD

Services

Service Code	Name	Access		Description
		Class level	Instance level	
0x0E	Get Attribute Single	Yes	Yes	Retrieve attribute value
0x10	Set Attribute Single	No	Yes	Modify attribute value

¹⁾ More details for the data types STRUCT can be found in the THE CIP NETWORKS LIBRARY, Volume 2.

8.4.1.7 Object 0x48 Quality of Service QoS

Class Attributes

Attribute ID	Name	Access	Description	Data type
1	Revision	Get	Revision of this object	UINT
2	Max. Instance	Get	Maximum instance number of an object currently created in this class level of the device	UINT
3	Number of Instances	Get	The number of instances currently created in this class	UINT
6	Maximum ID Number Class Attributes	Get	The attribute ID number of the last class attribute of the class definition implemented in the device.	UINT
7	Maximum ID Number Instance Attributes	Get	The attribute ID number of the last instance attribute of the class definition implemented in the device.	UINT

Instance Attributes

Attribute ID	Name	Access	Description	Data type
2	DSCP PTP Event	Get/Set	DSCP value for PTP Event frames	USINT
3	DSCP PTP General	Get/Set	DSCP value for PTP general frames	USINT
4	DSCP Urgent	Get/Set	DSCP value for implicit messages with urgent priority	USINT
5	DSCP Scheduled	Get/Set	DSCP value for implicit messages with scheduled priority	USINT
6	DSCP High	Get/Set	DSCP value for implicit messages with high priority	USINT
7	DSCP Low	Get/Set	DSCP value for implicit messages with low priority	USINT
8	DSCP Explicit	Get/Set	DSCP value for explicit messages	USINT

Services

Service Code	Name	Access		Description
		Class level	Instance level	
0x0E	Get Attribute Single	Yes	Yes	Retrieve attribute value
0x10	Set Attribute Single	No	Yes	Modify attribute value

8.4.1.8 Object 0xF5 TCP/IP Interface

Class Attributes

Attribute ID	Name	Access	Description	Data type
1	Revision	Get	Revision of this object	UINT
2	Max. Instance	Get	Maximum instance number of an object currently created in this class level of the device	UINT
3	Number of Instances	Get	The number of instances currently created in this class	UINT
6	Maximum ID Number Class Attributes	Get	The attribute ID number of the last class attribute of the class definition implemented in the device.	UINT
7	Maximum ID Number Instance Attributes	Get	The attribute ID number of the last instance attribute of the class definition implemented in the device.	UINT

Instance Attributes

Attribute ID	Name	Access	Description	Data type
1	Status	Get	Interface status	DWORD
2	Configuration Capability	Get	Interface capability flags	DWORD
3	Configuration Control	Set	Interface control flags	DWORD
4	Physical Link Object	Get	Path to physical link object	STRUCT 1
5	TCP/IP Interface Configuration	Get/Set	Interface Configuration (IP address, subnet mask, gateway address etc.)	STRUCT 1

¹⁾ More details for the data types STRUCT can be found in the THE CIP NETWORKS LIBRARY, Volume 2.

6	Host Name	Get/Set	The Host Name attribute contains the device's host name, which can be used for informational purposes.	STRING
8	TTL Value	Get/Set	TTL value for EtherNet/IP multicast packets	USINT
9	Mcast Config	Get/Set	IP multicast address Configuration	STRUCT 1
10	SelectAcd	Get/Set	Activates the use of ACD	BOOL
11	LastConflictDetected	Get/Set	Structure containing information related to the last conflict detected	STRUCT 1
13	Encapsulation Inactivity Timeout	Get/Set	Number of seconds till TCP connection is closed on encapsulation inactivity	UINT
14	IANA Port Admin	Get	IANA port admin configuration	STRUCT 1

Assign an IP address to the sensor via DHCP. Via attribute 3 of instance 1 of the TCP/IP class (0xF5 hex) you can choose between DHCP, BOOTP and static IP address.

Attribute 3 has the data type DWORD (bit string - 32 bits). The individual bits have the following meaning:

Bits	Name	Description
0-3	IP configuration	0 = The device uses a static IP address 1 = The device obtains its IP address via BOOTP 2 = The device obtains its IP address via DHCP 3-15 = Reserved
4	DNS Enable	If 1 (TRUE), the device shall resolve hostnames by querying a DNS server.
5-31	Reserved	Reserved, should be set to 0.

¹⁾ More details for the data types STRUCT can be found in the THE CIP NETWORKS LIBRARY, Volume 2.

You can change the IP address and the network mask via attribute 5 of instance 1 of the TCP/IP class (0xF5).

Attribute 5 is a structure composed of the following data types:

Name	Data type	Description	Values
IP address	UDINT	IP address of the sensor	A value of 0 means that no IP address has been configured. Otherwise, the IP address should be set to a valid class A, B or C address. The IP address must not be set to the loopback address (127.0.0.1).
Network mask	UDINT	Network mask of the sensor	A value of 0 means that no network mask has been configured.
Gateway	UDINT	Gateway-IP address of the sensor	A value of 0 means that no IP address has been configured. Otherwise, the IP address should be set to a valid class A, B or C address. The IP address must not be set to the loopback address (127.0.0.1).
Name Server	UDINT	Primary Name Server	A value of 0 means that no name server address has been configured. The name server address should be a class A, B or C address.
Name Server 2	UDINT	Secondary Name Server	A value of 0 means that no name server address has been configured. The name server address should be a class A, B or C address.
Domain name	STRING	Standard domain name	The maximum length is 48 ASCII characters. The number of characterized must be filled up to an even number (length does not include fill characters). A length of 0 means that no domain name is configured.

Attribute 3 and attribute 5 are stored retentively in the sensor.

EtherNet/IP, Documentation

Services

Service Code	Name	Access		Description
		Class level Instance level		
0x01	Get Attribute All	No	Yes	Returns content of instance or class attributes
0x0E	Get Attribute Single	Yes	Yes	Retrieve attribute value
0x10	Set Attribute Single	No	Yes	Modify attribute value

8.4.1.9 Object 0xF6 Ethernet Link

Class Attributes

Attribute ID	Name	Access	Description	Data type
1	Revision	Get	Revision of this object	UINT
2	Max. Instance	Get	Maximum instance number of an object currently created in this class level of the device	UINT
3	Number of Instances	Get	The number of instances currently created in this class	UINT
6	Maximum ID Number Class Attributes	Get	The attribute ID number of the last class attribute of the class definition implemented in the device.	UINT
7	Maximum ID Number Instance Attributes	Get	The attribute ID number of the last instance attribute of the class definition implemented in the device.	UINT

Instance Attributes

Attribute ID	Name	Access	Description	Data type
1	Interface Speed	Get	Interface speed currently in use	UDINT
2	Interface Flags	Get	Interface status flags	DWORD
3	Physical Address	Get	MAC layer address	ARRAY of USINT 1
4	Interface Counters	Get	Interface specific counters	STRUCT ¹
5	Media Counters	Get	Media specific counters	STRUCT ¹
6	Interface Control	Get/Set	Configuration for physical interface	STRUCT 1
7	Interface Type	Get	Type of interface: twisted pair, fiber	USINT
8	Interface State	Get	Current state of interface	USINT
9	Admin State	Get/Set	Administrative state:	USINT
10	Interface Label	Get	Human readable identification	SHORT STRING

¹⁾ More details for the data types STRUCT can be found in the THE CIP NETWORKS LIBRARY, Volume 2.

11	Interface Capability	Get	Indication of capabilities of the interface			STRUCT 1
768	MDIX	Get/Set	MDIX configuration Format: uint8_t, range [1 3]			
			1	EIP_EN_INTF_MDIX_AUTO	Auto detect	USINT
			2	2 EIP_EN_INTF_MDIX_MDI Explicit MDI		USINT
			3	EIP_EN_INTF_MDIX_MDIX	Explicit MDIX	USINT

Services

Service Code	Name	Access		Description
		Class level	Instance level	
0x01	Get Attribute All	No	Yes	Returns content of instance or class attributes
0x0E	Get Attribute Single	Yes	Yes	Retrieve attribute value
0x10	Set Attribute Single	No	Yes	Modify attribute value

Class-specific services

Service Code	Name	Access		Description
		Class Level	Instance Level	
0x4C	Get and Clear	No	Yes	Retrieves attribute value and subsequently sets the attribute value to zero (only for attributes Interface-Counters and Media-Counters).

¹⁾ More details for the data types STRUCT can be found in the THE CIP NETWORKS LIBRARY, Volume 2.

8.4.1.10 Object 0x43 Time Sync

Class Attributes

Attribute ID	Name	Access	Description	Data type
1	Revision	Get	Revision of this object	UINT
2	Max. Instance	Get	Maximum instance number of an object currently created in this class level of the device	UINT
3	Number of Instances	Get	The number of instances currently created in this class	ULINT
6	Maximum ID Number Class Attributes	Get	The attribute ID number of the last class attribute of the class definition implemented in the device.	UINT
7	Maximum ID Number Instance Attributes	Get	The attribute ID number of the last instance attribute of the class definition implemented in the device.	UINT

Instance Attributes

Attribute ID	Name	Access	Description	Data type
1	PTPEnable	Get/Set	PTP Enable	BOOL
2	IsSynchronized	Get	Local clock is synchronized with master	BOOL
3	SystemTimeMicroseconds	Get	Current value of system_time in microseconds	UINT
4	SystemTimeNanoseconds	Get	Current value of system_time in nanoseconds	ULINT
5	OffsetFromMaster	Get	Offset between local clock and master clock	LINT
6	MaxOffsetFromMaster	Get/Set	Maximum offset between local clock and master clock since last reset of this value.	ULINT
7	MeanPathDelayToMaster	Get	Mean path delay to master	LINT
8	GrandMasterClockInfo	Get	Grandmaster Clock Info	STRUCT 1
9	ParentClockInfo	Get	Parent Clock Info	STRUCT 1
10	LocalClockIno	Get	Local Clock Info	STRUCT 1

¹⁾ More details for the data types STRUCT can be found in the THE CIP NETWORKS LIBRARY, Volume 2.

11	NumberOfPorts	Get	Number of ports	UINT
12	PortStateInfo	Get	Port state info	STRUCT 1
13	PortEnableCfg	Get/Set	Port enable cfg	STRUCT 1
14	PortLogAnnounceIntervalCfg	Get/Set	Port log announce interval cfg	STRUCT 1
15	PortLogSyncIntervalCfg	Get/Set	Port log sync interval cfg	STRUCT 1
18	DomainNumber	Get/Set	Domain number	USINT
19	ClockType	Get	Clock type	WORD
20	Manufactureldentity	Get	Manufacture identity	USINT[4]
21	ProductDescription	Get	Product description	STRUCT 1
22	RevisionData	Get	Revision data	STRUCT ¹
23	UserDescription	Get	User description	STRUCT ¹
24	PortProfileIdentityInfo	Get	Port profile identity info	STRUCT 1
25	PortPhysicalAddressInfo	Get	Port physical address info	STRUCT ¹
26	PortProtocolAddressInfo	Get	Port protocol address info	STRUCT 1
27	StepsRemoved	Get	Steps removed	UINT
28	SystemTimeAndOffset	Get	System time and offset	STRUCT ¹
29	AssociatedInterfaceObjects	Get	Objects associated with PTP ports	STRUCT ¹
768	SyncParameters	Get/Set ²	Synchronization Parameters	

¹⁾ More details for the data types STRUCT can be found in the THE CIP NETWORKS LIBRARY, Volume 1.

²⁾ The time sync parameter attribute (attribute 768) is not available through the GetAttributesList and SetAttributesList services.

Details to the object Time Sync, attribute 768 (0x300h):

Variable	Туре	Value/Range	Description
Sync0Interval	UDINT	100.000 4.000.000 ns	Sync0 Interval in nanoseconds. This parameter specifies the interval of the Sync 0 signal in nanoseconds. The value 0 means the signal is deactivated. The starting point of the Sync0 signal is dependent on the Sync0 Offset (see parameter Sync0Offset).
Sync0Offset	UDINT	smaller than ulSync0Interval Default: 0	Sync 0 Offset in nanoseconds. This parameter specifies the offset for the Sync 0 signal relative to the system time (time of the Sync Master).
Sync1Interval	UDINT	0,10000 999999999 Default: 0	Sync1 Interval in nanoseconds. This parameter specifies the interval of the Sync 1 signal in nanoseconds. The value 0 means the signal is deactivated. The starting point of the Sync1 signal is dependent on the Sync1 Offset (see parameter ulSync1Offset).
Sync1Offset	UDINT	smaller than ulSync1Interval Default: 0	Sync 1 Offset in nanoseconds. This parameter specifies the offset for the Sync 1 signal relative to the system time (time of the Sync Master).
PulseLength	UDINT	1 500 and smaller than the minimum of the values Sync0Interval and Sync1Interval, when converted to microseconds. Default value: 4 µs	Pulse length of the Sync0 and Sync1 signals in microseconds

The sensors work exclusively with the Sync0 signal. The Sync1 signal is not used.

Services

Service Code	Name	Acc	cess	Description
		Class level	Instance level	
0x03	Get Attributes List All	No	Yes	The Get_Attribute_List service returns the contents of the selected attributes of the specified object class or instance
0x04	Set Attributes List	No	Yes	The Set_Attribute_List service sets the contents of selected attributes of the specified object class or instance
0x0E	Get Attribute Single	Yes	Yes	Retrieve attribute value
0x10	Set Attribute Single	No	Yes	Modify attribute value

8.4.1.11 Object 0x109 LLDP Management

Class Attributes

Attribute ID	Name	Access	Description	Data type
1	Revision	Get	Revision of this object	UINT
2	Max. Instance	Get	Maximum instance number of an object currently created in this class level of the device	UINT
3	Number of Instances	Get	The number of instances currently created in this class	UINT
6	Maximum ID Number Class Attributes	Get	The attribute ID number of the last class attribute of the class definition implemented in the device.	UINT
7	Maximum ID Number Instance Attributes	Get	The attribute ID number of the last instance attribute of the class definition implemented in the device.	UINT

Instance Attributes

Attribute ID	Name	Access	Description	Data type
1	LLDP Enable	Get/Set	Enables/Disables LLDP global or per port.	STRUCT 1
2	msgTxInterval	Get/Set	From 802.1AB-2016. The interval in seconds for transmitting LLDP frames from this device.	UINT
3	msgTxHold	Get/Set	From 802.1AB-2016. A multiplier of msgTxInterval to determine the value of the TTL TLV sent to neighboring devices.	USINT
4	LLDP Datastore	Get	An indication of the retrieval methods for the LLDP database supported by the device.	WORD
5	Last Change	Get/Set	A counter in seconds from the last time any entry in the local LLDP database changed or power up.	UDINT

¹⁾ More details for the data types STRUCT of can be found in the THE CIP NETWORKS LIBRARY, Volume 2.

EtherNet/IP, Documentation

Services

Service Code	Name	Access		Description
		Class level Instance level		
0x0E	Get Attribute Single	Yes	Yes	Retrieve attribute value
0x10	Set Attribute Single	No	Yes	Modify attribute value

8.4.2 Manufacturer Specific Objects

The manufacturer-specific objects do not have any instances. They exclusively support the services

- Get Attribute Single and
- Set Attribute Single.

Service Code	Name	Access		Description
		Class level Instance level		
0x0E	Get Attribute Single	Yes	Yes	Retrieve attribute value
0x10	Set Attribute Single	Yes	Yes	Modify attribute value

Specify the following when addressing:

- Class ID,
- Attribute ID and
- Service Code.

For the Instance ID you can use any value, because it is not checked by the sensor.

8.4.2.1 Object 0x64 Sensor Information

Class Attributes

Attribute ID	Name	Access	Data type
0	Hardwa60re version	Get	STRING(32)
1	Software version	Get	STRING(32)
2	Measurement range	Get	FLOAT
3	Option	Get	STRING(32)

8.4.2.2 Object 0x70 Data Acquisition

Class Attributes

Attribute ID	Name	Access	Description	Data type
0	Laser power	Get/Set	Switch laser on and off 0 - Off 2 - Reduced 1 - Full	USINT
20	Measuring task	Get/Set	Measurement task, object properties 0 - Standard 2 - Penetration 1 - Multisurface	USINT
22	Measuring rate	Get/Set	Free measuring rate; 250 10,000 Hz; Max. bus cycle 1 kHz, max. oversampling 8	REAL
29	Start of range	Get/Set	Start of evaluation range	UINT
30	End of range	Get/Set	End of evaluation range	UINT
39	Shutter mode	Get/Set	Exposure mode, automatic or manual 0 - Manual 1 - Automatic	USINT
40	Shutter time in us	Get/Set	Exposure time for manual mode; 1 4,000 μ s	REAL
41	Exposure mode	Get/Set	Automatic exposure selection 0 - Standard 2 - Background 1 - Intelligent	USINT
49	Peak selection	Get/Set	Peak selection video signal for distance calculation 0 - Highest peak 2 - Last peak 1 - Widest peak 3 - First peak	USINT
59	Error handling type	Get/Set	Behavior of digital output in case of error 0 - None 2 - Infinite 1 - Value	USINT
60	Error handling values	Get/Set	Hold value for 1 1,024 measuring cycles	UDINT

8.4.2.3 Object 0x80 Signal Processing

Class Attributes

Attribute ID	Name		Access	Description		Data type	
0	Average 1 type		Get/Set	Average type 0 - None 1 - Median	2 - Moving 3 - Recursive	USINT	
				Number of value	s over which the average is	taken	
1	Average 1 number of values for moving average		Get/Set	2 - 2 4 - 4 8 - 8	16 - 16 4096 - 4096	UDINT	
2	Average 1 number of values for median	Workflow average:	Get/Set	3 - 3 5 - 5	7 - 7 9 - 9	UDINT	
3	Average 1 number of values for recursive	- Select the averaging type (Average 1 or 2 type) - Define the averaging depth (Average 1 or 2 number of values for)	Get/Set	2 - 2 3 - 3 4 - 4	5 - 5 32000 - 32000	UDINT	
10	Average 2 type		Get/Set	Average type 0 - None 1 - Median	2 - Moving 3 - Recursive	USINT	
			values for)	values for)		Number of value	s over which the average is
11	Average 2 number of values for moving average		Get/Set	2 - 2 4 - 4 8 - 8	16 - 16 4096 - 4096	UDINT	
12	Average 2 number of values for median		Get/Set	3 - 3 5 - 5	7 - 7 9 - 9	UDINT	
13	Average 2 number of values for recursive		Get/Set	2 - 2 3 - 3 4 - 4	5 - 5 32000 - 32000	UDINT	
203	Mastering set/reset		Get/Set	Perform zeroing 0 - Reset	or mastering or terminate 1 - Set	BOOL	
204	Mastering value		Get/Set	' '	ness of a master object. +2 x measuring range	REAL	

8.4.2.4 Object 0x90 Settings

Class Attributes

Attribute ID	Name	Access	Description	Data type
0	Key lock	Get/Set	Key lock Select button	USINT
1	Key lock countdown [min]	Get/Set	For Auto function : after expiration, key lock sets; 1 60 min	USINT
10	Current access authorization	Get	User level query 1 - User 3 - Professional	USINT
11	Login	Set	Password for a change to the Professional level	STRING(32)
12	Logout	Get/Set	Change to User level 0 - No 1 - Yes	BOOL
13	User level when restarting	Get/Set	Setting the user level after a restart of the sensor 1 - User 2 - Professional	USINT
14	Change password old	Set		STRING(32)
15	Change password new	Set	Create and change password for the Professional level	STRING(32)
16	Change password repeat	Set	- Sional level	STRING(32)
20	Reset to factory measurement settings	Set	Reset measurement settings 0 - False 1 - True	BOOL
21	Reset to factory device settings	Set	Reset device settings 0 - False 1 - True	BOOL
23	Reset to factory all settings	Set	Reset all 0 - False 1 - True	BOOL
24	Reboot sensor	Set	Reboot sensor 0 - False 1 - True	BOOL
40	Device settings load	Set	Loads the saved device settings from the sensor 0 - False 1 - True	BOOL

Class Attributes 0x90 (Settings)

Attribute ID	Name	Access	Description	Data type
41	Device settings save	Set	Saves the current device settings in the sensor 0 - False 1 - True	BOOL
60	Preset settings mode	Get/Set	Returns the currently used preset mode (signal quality); with <parameter> the preset mode (signal quality) to be used is set. 0 - None 3 - Dynamic 1 - Static 4 - No averaging 2 - Balanced</parameter>	USINT
61	Preset settings list	Get	Lists all existing manufacturer-specific programs.	STRING(230)
62	Preset settings read	Set	Loads and executes a preset <name> for use in the sensor.</name>	STRING(32)
80	Measurement settings current	Get	Contains the currently used user program (setup) in the String field.	STRING(32)
81	Measurement settings read	Set	Read loads a measuring program and activates it, enter the setup name in the String field and confirm with OK.	STRING(32)
82	Measurement settings store	Set	Store saves a measuring program, enter the setup name in the String field and confirm with OK.	STRING(32)
83	Measurement settings delete	Set	Enter setup name in the String field and confirm with OK	STRING(32)
84	Measurement settings initial	Get/Set	Displays the user program to be loaded when the sensor is started.	STRING(32)
85	Measurement settings list	Get	Displays the names of the user programs (setups).	STRING(230)

8.4.2.5 Object 0xC0 Mappings

Class Attributes

Attribute ID	Name	Access	Data type	Initial value
0	Reset mapping	Set	USINT	1
1	Size	Get	UINT	36
2	Oversampling	Get/Set	USINT	1
10	Frequency + shutter	Get/Set	USINT	1
11	Frame time stamp	Get/Set	USINT	1
12	Frame counter	Get/Set	USINT	1
13	Frame status	Get/Set	USINT	1
14	Not linearized center of gravity (Unlin) + intensity + linearized center of gravity (Lin)	Get/Set	USINT	1
15	Peak 1 distance	Get/Set	USINT	1

For more information, refer to the I/O Connection section, see Chap. 8.5.4.

8.4.2.6 Object 0xC1 Process Data

Class Attributes

Attribute ID	Name	Access	Description	Data type
0	out_shutter	Get	Exposure time	UDINT
1	out_frequency	Get	Measurement frequency	UDINT
2	out_frametimestamp	Get	Time stamp	UDINT
3	out_framecounter	Get	Measured value counter	UDINT
4	out_framestatus	Get	Sensor state	UDINT
5	out_01_md_unlin	Get	Unlinearized center of gravity	UDINT
6	out_01_md_intensity	Get	Intensity	UDINT
7	out_01_md_lin	Get	Linearized center of gravity	UDINT
8	out_01_peak1_distance	Get	Distance	UDINT

8.5 Implicit Messaging

8.5.1 General

Via implicit messaging, the ILD1900-IE with EtherNet/IP cyclically sends input data to the EtherNet/IP scanner. To run implicit messaging, it is necessary to open an I/O connection. I/O connections contain so-called assemblies. An assembly contains one or more parameters that specify the structure of the process data.

There are three different types of I/O connections

- Input Only: The I/O connection contains only input process data
- Listen Only: The I/O connection contains only input process data
- Exclusive Owner: The I/O connection contains input and output process data

An I/O connection of the type Listen Only can only be established if an I/O connection of the type Input Only has already been established with the same assemblies. Thus, multiple participants can receive input process data from an adapter according to the producer/consumer model.

Since the ILD1900-IE with EtherNet/IP only has input process data, the ILD1900-IE with EtherNet/IP has no I/O connections of the Exclusive Owner type.

An I/O connection can contain up to 4 different assemblies. A basic distinction is made between input, output and configuration assemblies. While input and output assemblies are intended for permanent cyclic process data exchange, the data of a configuration assembly is sent once when the I/O connection is established.

Page 94

- Input assembly: Cyclic process data, adapter > scanner
- Output assembly: Cyclic process data, scanner > adapter
- Input configuration assembly: One-time data when setting up the connection, adapter > scanner
- Output configuration assembly: one-time data when setting up the connection, scanner > adapter

The ILD1900-IE with EtherNet/IP provides four different I/O connections:

Name	Size of the input assembly in bytes	Туре
Fixed OV1 Input Only	36	Input Only
Fixed OV1 Listen Only	36	Listen Only
Mappable Input Only	0 - 288	Input Only
Mappable Listen Only	0 - 288	Listen Only

8.5.2 I/O-Connection Fixed OV1 Input Only

This I/O connection has only one input assembly with a fixed size of 36 bytes. All input process data available in the sensor are transmitted with an oversampling of 1. The I/O connection does not include output or configuration assemblies. The process data is structured as follows:

Bytes	Measurement value name	Description
0 - 3	out_shutter	Exposure time
4 – 7	out_frequency	Measurement frequency
8 - 11	out_frametimestamp	Time stamp
12 - 15	out_framecounter	Measured value counter
16 - 19	out_framestatus	Sensor state
20 - 23	out_01_md_unlin	Unlinearized center of gravity
24 - 27	out_md_intensity	Intensity
28 - 31	out_01_md_lin	Linearized center of gravity
32 - 35	out_01_peak1_distance	Distance

8.5.3 I/O-Connection Fixed OV1 Listen Only

This I/O connection corresponds to the structure of the input process data of the I/O connection Fixed OV1 Input Only. The difference is that you can only use this I/O connection if the Fixed OV1 Input Only I/O connection already exists.

8.5.4 I/O Connection Mappable Input Only

The I/O connection contains an input assembly and an input configuration assembly. The input assembly has a variable size that depends on the mapped input process data. Unlike Fixed OV1 Input Only, you can configure the contents of the input assembly individually. This approach is called mapping.

You have two options to configure the mapping:

- Configuration assembly of the I/O connection or
- Mapping Object 0xC0.

The configuration assembly is structured as follows:

Byte	Name	Default	Min	Max	Description	Process data size in byte
0	Activation	0	0	1	If you set this value to 0, the sensor will ignore the data in the configuration assembly and use the last configured mapping in the mapping object 0xC0 instead. If you set this value to 1, the sensor will overwrite the mapping in the mapping object 0xC0 based on the transmitted data of the configuration assembly and use this configuration.	
	Oversampling	1	1	8	Select an oversampling factor between 1 and 8. The process data size is then derived from the mapping multiplied by the oversampling factor.	
2	Frequency + shutter	1	0	1		8
3	Frame time stamp	1	0	1		4
1	Frame counter	1	0	1	1 = Process data are mapped	4
5	Frame status	1	0	1	0 = Process data are not mapped	4
6	Unlin + Intensity + Lin	1	0	1		12
7	Peak 1 distance	1	0	1		4

Provided that your PLC software supports this, the values for the configuration assembly can be stored permanently in your PLC project, so that the mapping is transmitted anew at each commissioning.

If you configure the mapping via the configuration assembly, you have to adjust the size of the input assembly accordingly. The size of the input assembly is calculated as follows:

Input assembly size = (mapping size 0 + mapping size 1 + ... + mapping size n) * oversampling

Example: Frequency + Shutter and Frametimestamp are mapped with an oversampling of 2.

Byte	Name	Configured value	Process data size
0	Activation	1	
1	Oversampling	2	
2	Frequency + Shutter	1	8
3	Frame time stamp	1	4
4	Frame counter	0	4
5	Frame status	0	4
6	Unlin + Intensity + Lin	0	12
7	Peak 1 distance	0	4

Size of the input assembly = (8 byte + 4 byte) * 2 = 24 byte

As an alternative to the configuration assembly, you can configure the mapping via the mapping object 0xC0. In this Object you will find the same mappings as well as the oversampling.

The attributes of the mapping object are structured as follows:

Attribute	Name	Description	Standard value
0	Reset mapping	Resets the mapping object to the default configuration when a 1 is written. See the Default Value column.	
1	Size	Returns the size of the input assembly based on the currently configured mapping. By reading this attribute, you do not have to calculate the size yourself.	36
2	Oversampling		
10	Frequency + shutter		1
11	Frame time stamp		1
12	Frame counter	1 = Process data are mapped	1
13	Frame status	0 = Process data are not mapped	1
14	Unlin + Intensity + Lin		1
15	Peak 1 distance		1

Example: Frequency + Shutter, Frame counter and Peak 1 distance are mapped with an oversampling of 3.

Attribute	Name	Configured value	Process data size
0	Reset mapping	0	
1	Size		48
2	Oversampling	3	
10	Frequency + Shutter	1	8
11	Frame time stamp	0	4
12	Frame counter	1	4
13	Frame status	0	4
14	Unlin + Intensity + Lin	0	12
15	Peak 1 distance	1	4

Size of Size = (8 bytes + 4 bytes + 4 bytes) * 3 = 48 bytes

Remember to set the byte 0 Activation in the Configuration Assembly to 0 when configuring the mapping via class 0xC0. Otherwise, your configuration will be overwritten by the configuration assembly when the I/O connection is established.

8.5.5 I/O Connection Mappable Listen Only

This I/O connection corresponds to the structure of the input process data of the I/O connection Mappable Input Only. The difference is that you can only use this I/O connection if the Mappable Input Only I/O connection already exists.

8.6 Device description file EDS

You must integrate the EDS file (Electronic Data Sheet) associated with the device into your PLC software in order to operate the ILD1900 EtherNet/IP. Each device is uniquely identified by the vendor ID, product code, and major and minor revision. You can find this information in your *.eds file. Make sure that the *.eds file matches the revision of your device.

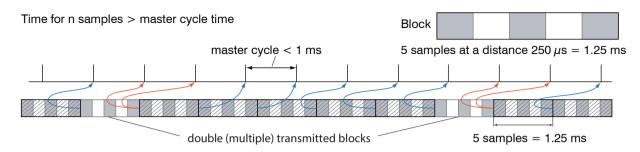
You can read the revision from the device via attribute 4 of instance 1 of the Identity object (0x01).

8.7 Oversampling


With the ILD1900-IE with EtherNet/IP the oversampling is set globally via the Configuration Assembly or via the mapping object 0xC0. The ILD1900-IE with EtherNet/IP supports an oversampling of up to 8.

In operation without oversampling, the last accumulated measured value data set is transferred to the EtherNet/IP adapter with each fieldbus cycle. Therefore, for long fieldbus cycle periods data records with measured values are possibly not available. Configurable oversampling ensures that all (or selected) measured value data records are gathered and transmitted together to the adapter during the next fieldbus cycle. In general, a possible oversampling depends on the ratio of sensor measuring rate to fieldbus cycle time.

The oversampling factor specifies how many samples per bus cycle are transmitted. Currently the ILD1900-IE supports oversampling of 1, 2, 3, 4, 5, 6, 7 and 8. For example, an oversampling factor of 2 means that 2 samples are transferred per bus cycle.


To ensure that no samples are lost due to the asynchronous nature between the master cycle and slave cycle, the master cycle time should always be less than the time for building a block from n samples.

An entire block with the specified samples is only made available to the adapter side after all specified samples have been written to the block. If the time for filling a block is less than the master cycle time, individual blocks are not transferred. It can indeed happen that the next block is already being filled with samples before the previously filled block is picked up in a master cycle.

But if you select a number of samples sufficiently large so that the time for filling a block is greater than the master cycle time, each block will be picked up in a master cycle. Individual blocks (and therefore samples), however, will be transferred two or more times. This can be detected on the adapter side by transferring the timestamp or value counter.

Page 101

8.8 IP Address Sensor Unknown

If you do not know the IP address of the sensor because your DHCP/BOOTP server does not display the address or because you have forgotten the static IP address, you can still find the sensor via a CIP List Identity Request. A CIP List Identity Request is sent as a broadcast via UPD or TCP.

The sensor will then reply as a unicast on its IP address. Check to what extent your PLC software supports the List Identity Request. A tool that also supports the List Identity Request is e.g. the EtherNet/IP tool from Molex.

8.9 IP Configuration

The sensor is delivered in DHCP mode. You need a DHCP server to assign an IP address to the sensor. Implicit and explicit messaging is only possible if the sensor has a valid IP address.

8.10 Synchronization of Sensors

8.10.1 **General**

Measuring with the Sync0 frequency of the PLC instead of the internal measuring rate

A sensor works with the internal measuring rate. Furthermore, you can let the sensor measure with the Sync0 frequency from the Time Sync object to reduce jitter.

Procedure:

- Use the object 0x43 Time Sync.
- Set the instance attribute 1 (PTPEnable, 0x1h) to 1 (=enabled).
- Set the values for the instance attribute 768 (SyncParameters, 0x300h).
- Note that the sensor only works with the Sync0 signal works. The Sync1 signal is not used. You can therefore set Sync1Interval and Sync1Offset to 0. For the pulse length we recommend to keep the default value of 4 μ s.

If PTPEnable is set to 0 (disabled), then you must set PTPEnable to 1 (enabled) either before or after configuring the SyncParameter attribute.

If you want to measure with the internal measuring rate in the sensor instead of the Sync0 frequency, you must either set the attribute PTPEnable to 0 (Disabled) or the Sync0 frequency in the attribute SyncParameters to 0.

8.10.2 Simultaneous Synchronization

All sensors measure at the same time.

Example: The sensors should measure with a measuring rate of 2 kHz.

Procedure:

Set the instance attribute 1 (PTPEnable, 0x1h) to 1 (=enabled) via Set Attribute Single service (0x10).

Set the values for the instance attribute 768 (SyncParameters, 0x300h) in all sensors via Set Attribute Single service (0x10).

Variable	Туре	Value/Range
Sync0Interval	UDINT	500.000 ns
Sync0Offset	UDINT	0 ns
PulseLength	UDINT	Default value: 4 µs

9. Cleaning

We recommend cleaning the protective glass at regular intervals.

Dry Cleaning

This can be accomplished with an anti-static lens brush or by blowing off the windows with dehumidified, clean, oil-free compressed air.

Wet Cleaning

Use a clean, soft, lint-free cloth or lens cleaning paper and pure alcohol (isopropyl alcohol) to clean the protective glass pane.

Never use commercially available glass cleaner or other cleaning agents.

10. Disclaimer

All components of the device have been checked and tested for functionality in the factory. However, should any defects occur despite careful quality control, these shall be reported immediately to MICRO-EPSILON or to your distributor/retailer.

MICRO-EPSILON undertakes no liability whatsoever for damage, loss or costs caused by or related in any way to the product, in particular consequential damage, e.g., due to

- non-observance of these instructions/this manual,
- improper use or improper handling (in particular due to improper installation, commissioning, operation and maintenance) of the product,
- repairs or modifications by third parties,
- the use of force or other handling by unqualified persons.

This limitation of liability also applies to defects resulting from normal wear and tear (e.g., to wearing parts) and in the event of non-compliance with the specified maintenance intervals (if applicable).

MICRO-EPSILON is exclusively responsible for repairs. It is not permitted to make unauthorized structural and / or technical modifications or alterations to the product. In the interest of further development, MICRO-EPSILON reserves the right to modify the design.

In addition, the General Terms of Business of MICRO-EPSILON shall apply, which can be accessed under Legal details | Micro-Epsilon https://www.micro-epsilon.com/impressum/. For translations into other languages, the German version shall prevail.

11. Service, Repair

If the sensor or sensor cable is defective:

- If possible, save the current sensor settings in a parameter set, see Chap. 7.7.3, to reload them into the sensor after the repair.
- Please send us the affected parts for repair or exchange.

If the cause of a fault cannot be clearly identified, please send the entire measuring system to:

MICRO-EPSILON Optronic GmbH Lessingstraße 14

01465 Langebrück / Deutschland

Tel. +49 (0) 35201 / 729-0 Fax +49 (0) 35201 / 729-90 optronic@micro-epsilon.de www.micro-epsilon.de

12. Decommissioning, Disposal

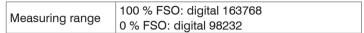
In order to avoid the release of environmentally harmful substances and to ensure the reuse of valuable raw materials, we draw your attention to the following regulations and obligations:

- Remove all cables from the sensor and/or controller.
- Dispose of the sensor and/or the controller, its components and accessories, as well as the packaging materials in compliance with the applicable country-specific waste treatment and disposal regulations of the region of use.
- You are obliged to comply with all relevant national laws and regulations

For Germany / the EU, the following (disposal) instructions apply in particular:

Waste equipment marked with a crossed garbage can must not be disposed of with normal industrial
waste (e.g. residual waste can or the yellow recycling bin) and must be disposed of separately. This
avoids hazards to the environment due to incorrect disposal and ensures proper recycling of the old
appliances.

- A list of national laws and contacts in the EU member states can be found at https://ec.europa.eu/environment/topics/waste-and-recycling/waste-electrical-and-electronic-equipment-weee_en. Here you can inform yourself about the respective national collection and return points.
- Old devices can also be returned for disposal to MICRO-EPSILON at the address given in the imprint at https://www.micro-epsilon. de/impressum/.
- We would like to point out that you are responsible for deleting the measurement-specific and personal data on the old devices to be disposed of.
- Under the registration number WEEE-Reg.-Nr. DE28605721, we are registered at the foundation Elektro-Altgeräte Register,
 Nordostpark 72, 90411 Nuremberg, as a manufacturer of electrical and/or electronic equipment.


Appendix

A 1 Optional Accessories

PS2020	PUS	Power supply for DIN rail installation, input 230 VAC, output 24 VDC/2.5 A
PC1900-IE-x/RJ45		Interfaces and supply cable Length $x=3$, 6 or 9 m 12-pin round socket and RJ45 plug for fieldbus connection
PC1900-IE-x/OE-RJ45		Power and output cable, Length x = 3, 6 or 9 m 12-pin round socket, RJ45 plug for fieldbus connection or open ends for supply and laser activation

A 2 Factory Settings

Measurement averaging	Median, 9 values		Measuring rate
Peak selection	Highest peak		Language

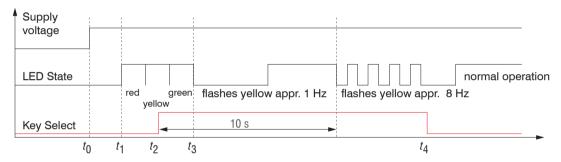


Fig. 32 Flowchart for starting a sensor with factory settings

 t_0 : Supply voltage is applied

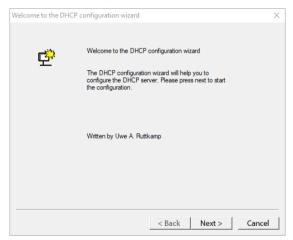
t₁ ... t₂: both LEDs indicate the start sequence (red-yellow-green each for 1 sec.)

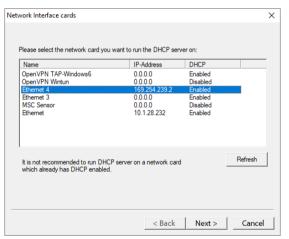
 t_2 : Select button is pushed during the start sequence $(t_1 \dots t_3)$

 t_4 : Select button is released while the State LED is flashing yellow

 $\Delta t = t_4$ - t_2 ; Δt (key stroke duration) must be at least 10 sec., max. 15 sec.

Reset to factory setting: Press the Select key after having switched on the sensor while the two LEDs light up "red - yellow - green". Hold the key pressed. After 10 seconds, the Status LED starts flashing quickly. If you release the key while it flashes quickly, the sensor is reset to factory settings. If you hold the key pressed for longer than 15 seconds, the sensor is not reset to factory settings. If the Select key is kept pressed when switching on the sensor (or with a reset), the sensor switches to the Bootloader mode.

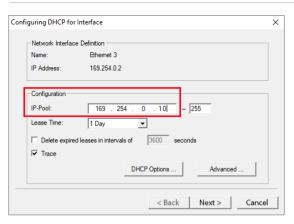

4 kHz German


A 3 DHCP Server, IP Assignment

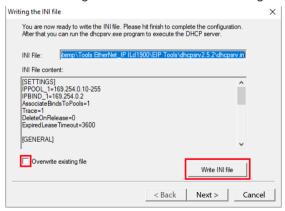
An ILD1900-IE with EtherNet/IP is delivered in DHCP mode. A DHCP server is required, to assign an IP address to the sensor.

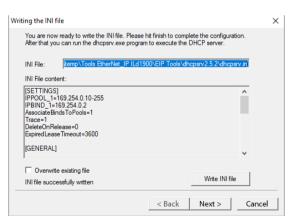
The following steps show an example of an address assignment. The freeware is included in the DHCP Server V2.5.2 package. A free download is available at the following address: https://www.dhcpserver.de/cms/download/.

- You need admin rights to run this program.
- Start this program from a local hard disk only.
- Connect the sensor to your PC/notebook.
- Start the program dhcpwiz.exe.



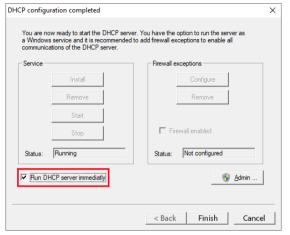
The wizard lists all available network connections.

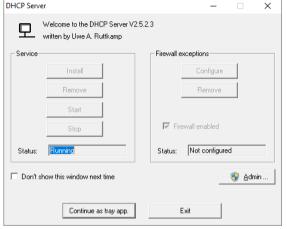

Select the network port to which your sensor is connected. Confirm with Next.


You can skip the following query about the supported protocols without specifying anything.

Define the possible range for the IP addresses in the Configuration field.

A client is assigned an IP address from this range.





Select the Overwrite existing file field and click Write INI file.

Disconnect the power supply to the sensor; then reconnect the sensor to the power supply. This will force the sensor to restart.

According to this example, the connected sensor is available under the IP address 169.254.0.10.

Click the Finish button to exit the wizard.

If you select the option Run DHCP server immediately, the DHCP server (dhcpsrv.exe) starts automatically. The field Status reports a successful configuration with the entry Running.

MICRO-EPSILON MESSTECHNIK GmbH & Co. KG
Königbacher Str. 15 · 94496 Ortenburg/Germany
Phone +49 8542 / 168 0 · Fax +49 8542 / 168 90
info@micro-epsilon.com · www.micro-epsilon.com
Your local contact: www.micro-epsilon.com/contact/worldwide/