

Operating Instructions optoCONTROL 2520

optoCONTROL 2520-46 optoCONTROL 2520-46(090) optoCONTROL 2520-95 optoCONTROL 2520-95(270) Laser micrometer

MICRO-EPSILON Eltrotec GmbH Manfred-Wörner-Straße 101

73037 Göppingen / Germany

Tel. +49 (0) 7161 / 98872-300 Fax +49 (0) 7161 / 98872-303 e-mail: eltrotec@micro-epsilon..com www.micro-epsilon.com

Contents

1.	Safety	. 9
1.1	Symbols Used	9
1.2	Notes on Product Marking	10
1.0	1.3.1 CE Marking	10
	1.3.2 UKCA Marking	10
1.4	Intended Use	10
1.5		10
2.	Laser Safety	11
3.	Functional Principle, Technical Data	13
3.1	Short Description	13
3.2	Block Diagram	14 17
3.4	Functions	15
3.5	Operating Modes	16
3.6	Technical Data ODC2520-46	17
3.7	iechnical Data ODC2520-95	18
4.	Delivery	19
4.1	Unpacking, Included in Delivery	19
4.2	Storage	19
	Mounting	00
5. 1	General	20
5.2	Light Source and Receiver	20
	5.2.1 Dimensions	20
	5.2.2 Free Mounting	23
	5.2.4 Calibrated Measuring Distances	25
5.3	Electrical Connections	26
	5.3.1 Receiver	26
	5.3.2 Light Source	21
	5.3.4 Power Supply, Inputs/Outputs, RS422	30
	5.3.5 Power Supply	31
	5.3.6 Ethernet, EtherCAI	31
	5.3.8 Wiring of the Switching Outputs	32
5.4	LEDs on Receiver	33
•	One work have	~ ~
6 .	Uperation	34
62	Control via Ethernet	34
0.2	6.2.1 Requirements	34
	6.2.2 Access via Ethernet	36
63	6.2.3 Measuring Value Presentation with Ethernet (Web Browser)	36
0.0	6.3.1 Light Source Reference	37
	6.3.2 Video Signal, Edge Detection	38
6.4	User Interface, Basic Preferences	40
	6.4.1 Introduction	40
	6.4.3 Measurement Program.	40
	6.4.3.1 Definitions	40
	6.4.3.2 Program Selection	42
65	6.4.3.3 Change Search and Measuring Direction of Edges	43 77
6.6	Save / Load Settings in Sensor	46
	6.6.1 Preliminary Remarks	46
	6.6.2 Save in Sensor	46
	0.0.3 Load from the Sensor	40
7.	Advanced Settings	47
7.1	Login, Switching User Level	47
	7.1.1 Freiminary nemarks to Password Protection	41 47
	7.1.3 Password Assignment	48
7.2	Measurement Program Segments	49
	7.2.1 Preliminary Remark	49
73	Averaging / Frror Handling / Spike Correction / Statistics	49 50
	7.3.1 Notes on Averaging	50
	7.3.2 Processing Sequence	50
	7.3.3 Measuring Value Averaging	51
	7.3.4 Endimanding (noid Last value)	53 54
	7.3.6 Statistics	55

7.4	Zeroing / Mastering	56
	7.4.2 Setting Zeroing / Masters	
	7.4.3 Mastering or Zeroing via Switching Input (In)	57
7.5	Digital Interfaces	58
	7.5.1 Overview Menu Structure	58
	7.5.2 Select Digital Interfaces	58
	7.5.3 Select Data	59
	7.5.4 Ethernet	60
	7.5.5 <u>RS422</u>	60
	7.5.6 EtherCAI	61
7.0	7.5.7 Switching between Ethernet and EtherCAI	61
1.6	Switching Outputs	62
	7.6.1 General	02
	7.6.3 Limit Value Settings	63
	7.6.4 Switch Behavior of Error Outputs	63
77	Analog Output	64
	7.7.1 General	64
	7.7.2 Setting Analog Output	64
	7.7.3 Two-Point Scaling	65
7.8	Output Data Rate	65
7.9	Trigger Mode	66
	7.9.1 Preliminary Remarks	66
	7.9.2 Setting the Trigger Mode	66
	7.9.3 Triggering the Measuring Value Output Recording	68
	7.9.4 Iriggering the Measuring Value Output	68
7 10	7.9.5 Example	68
7.10	Synchronization	69
7.11	Manage Setups On FC	70
1.12	Z XU as	/ 1
	7 12 2 Best the Sensor	71
	7.12.3 Select Measuring Unit	
7.13	Masking Evaluation Bange	72
7.14	Help / Info	73
7.15	Timing, Measuring Value Flux	73
-		
8.	Errors, Repair	. 74
8.1	Communication	74
8.2	Optical imitiences	74
	0.2.1 FOIluitolls	74
	8.2.3 Shadowing of the Laser Light	
	8.2.4 Temperature Differences	76
	825 Edge Jumps	76
	8.2.6 Thin Targets	77
	8.2.7 Transparent Targets	78
	8.2.8 Wrong Edge Number	78
•		
9.	Sonware Update	. 79
9.1	Flocequie	79
9.2	แบนมเคราเบบแทปู	79
10.	Software Support with MEDAQLib	. 80
11.	Disclaimer	. 81
12.	Service, Repair	. 81
13.	Decommissioning, Disposal	. 82

Appendix

A 1	Optiona	I Accesso	ries	83
A 2	Factory	Setting		86
A 2.1	Paramete	er		
A 2.2	Set Delat	un sennys.		07
A 3	RS422 ,	Connection SB Convert	on to RS422 Converter	88
A 3.2	IF2004/U	SB 4-Chanr	nel RS422/USB Converter	
A 3.3	IC2001/L	ISB Single-(Channel RS422/USB Converter Cable	88
A 4	ASCII C	ommunic	ation	89
A 4.1	General .	ids Overviev	N/	89 89
A 4.3	General	Commands	· · · · · · · · · · · · · · · · · · ·	
	A 4.3.1	General	Heln	
		A 4.3.1.2	Sensor Information	
		A 4.3.1.3	Reply Type Parameter Overview	
		A 4.3.1.5	Synchronization	
	A 4 3 0	A 4.3.1.6	Booting the Sensor	
	A 4.0.2	A 4.3.2.1	Changing the User Level	
		A 4.3.2.2	Changing to User Level	
		A 4.3.2.3 A 4.3.2.4	Setting the User Level on Restart (Standard User)	
	A 4 9 9	A 4.3.2.5	Changing the Password	
	A 4.3.3	A 4.3.3.1	Light Correction	
		A 4.3.3.2	Edge Detection Threshold	
A 4.4	Measure	ment		
	A 4.4.1	Measurem	nent Distance Calibration Tables	
		A 4.4.1.1 A 4.4.1.2	Current Calibration Table for a Measuring Distance	
	A 4 4 0	A 4.4.1.3	Table of all Calibrated Measuring Distances	
	A 4.4.2	A 4.4.2.1	Measurement Program Selection	
		A 4.4.2.2	Search Direction Edges	
		A 4.4.2.3 A 4.4.2.4	Number of Expected Edges	
		A 4.4.2.5	Definition of Segments	
	A 4.4.3	A 4.4.2.6 Measuring	Signal Names	
		A 4.4.3.1	Averaging of Measuring Value	
		A 4.4.3.2 A 4.4.3.3	Error Processing	
		A 4.4.3.4	Selection of the Measuring Value for the 1 st Statistics	
		A 4.4.3.5 A 4.4.3.6	Selection of the Measuring value for the 2 nd Statistics	
		A 4.4.3.7	Resetting the Statistics Calculation	
		A 4.4.3.8 A 4.4.3.9	Mastering / Zeroing	
A 4.5	Data Out	put via Digit	al Interfaces	
	A 4.5.1	A 4.5.1.1	Selection Digital Output	
		A 4.5.1.2	Ethernet IP Settings	
		A 4.5.1.3 A 4.5.1.4	Setting RS422 Baud Rate	
		A 4.5.1.5	Change Ethernet / EtherCAT	
	A 4.5.2	A 4.5.1.6 Select Me	asuring Values to be Output	100
		A 4.5.2.1	Preliminary Remarks on the Measuring Value Selection	100
		A 4.5.2.2 A 4.5.2.3	Output of the Measuring Values Edge Low-High Via RS422 and Ethernet	100
		A 4.5.2.4	Output of the Diameter Data via RS422 and via Ethernet	100
		A 4.5.2.5 A 4.5.2.6	Output of the Segment Data via RS422 and Ethernet	100
		A 4.5.2.7	Output of the Additional Data via RS422 and Ethernet	101
		A 4.5.2.8 A 4.5.2.9	Output of Video Signals via Ethernet	101
	A 4.5.3	Switching	Outputs	102
		A 4.5.3.1 A 4.5.3.2	Hold Period of Switching Outputs	102
		A 4.5.3.3	Setting Limit Values	102
	A 4.5.4	A 4.5.3.4 Analog Ou	Juput	102
		A 4.5.4.1	Data Selection for the Analog Output	102
		A 4.5.4.2 A 4.5.4.3	Scaling of the Analog Output	103

	A 4.5.5	Triggering	103
		A 4.5.5.1 Preliminary Remarks to the Triggering	103
		A 4.5.5.2 Trigger Type	103
		A 4.5.5.3 Effect of the Trigger Input	103
		A 4.5.5.4 Trigger Level (Active Level of the Trigger Input)	103
		A 4.5.5.5 Number of Output Measuring Values	
		A 4.5.5.6 Software Trigger Pulse (Creating a Software Trigger Signal)	
	A 4.5.6	Parameter Management, Load / Save Settings	
		A 4.5.0.1 Save Falameter Set	
		A + 3.5.6.2 Load raidillete Set	
		A 4 5 6 4 Measuring Unit Web Interface	104
	A 4.5.7	Measuring Data	
		A 4.5.7.1 Measuring Value Format	
		A 4.5.7.2 Video Signal	106
		A 4.5.7.3 Measuring Value Counter	106
		A 4.5.7.4 Time Stamp	106
		A 4.5.7.5 Number of Edges	106
		A 4.5.7.6 Number of Pins	
		A 4.5.7.7 Number of Gaps	
		A 4.5.7.8 Status	
		A 4.5.7.9 Medsulfing Data	
	A 1 5 8	Measuring Data Format	100
	A 4.0.0	A 4 5 8 1 Data Format RS422 Interface	109
		A 4.5.8.2 Error Codes BS422 Interface	
		A 4.5.8.3 Measuring Data Transmission to a Measuring Value Server via Ethernet	110
		A 4.5.8.4 Error Codes Ethernet Interface	112
		A 4.5.8.5 Ethernet Video Signal Transmission	112
		A 4.5.8.6 Switching the Laser Light Source	112
A 4.6	Warning	and Error Messages	113
	— · · ·		
A 5	leinet		115
A 5.1	General.	De av inserte ant	
	A 5.1.1	Kequirement	
	A 5.1.2		
A 5 2	Evample	LITOI Messages	
A 0.2	Example		
A 6	EtherC/	AT Documentation	116
A 6.1	General.		
A 6.2	Introduct	ion	116
	A 6.2.1	Structure of EtherCAT®-Frames	116
	A 6.2.2	EtherCAT® Services	116
	A 6.2.3	Addressing and FMMUs	117
	A 6.2.4	Sync Manager	
	A 6.2.5	EtherCAT State Machine	
	A 6.2.6		
	A 6.2.7	Process Data PDO Mapping	
163		Service Data SDO Service	120
A 0.5		Characteristics	120
	A 6 3 2	Comunication Specific Standard Objects (CiA DS-301)	120
	/(0.0.2	A 6 3 2 1 Overview	120
		A 6.3.2.2 Object 1000h: Divice type	
		A 6.3.2.3 Object 1001h: Error register	121
		A 6.3.2.4 Object 1003h: Error history	121
		A 6.3.2.5 Object 1008h: Device name	121
		A 6.3.2.6 Object 1009h: Hardware version	121
		A 6.3.2.7 Object 100Ah: Software version	121
		A 6.3.2.8 Object 1018h: Identity	
		A 6.3.2.9 Object 1A00h: IxPDO mapping	
		A 6.3.2.10 Object 1A01 up to 1A18: IXPDO mapping	
		A 6.3.2.11 Object 1000n: Sync manager type	
		A 0.3.2.12 Object TOTOTI: TXFDU assign	
	A 6 3 3	A 0.3.2.13 Object 10331. Sivi input manager	
	A 0.3.3		123 102
		A 6 3 3 2 Object 2001h [•] User level	123
		A 6.3.3.3 Object 2005b: Sensor informations	124
		A 6.3.3.4 Object 2010h: Setup	
		A 6.3.3.5 Object 2011h: Correction	
		A 6.3.3.6 Object 2050h: Advanced settings	
		A 6.3.3.7 Object 2101h: Reset	124
		A 6.3.3.8 Object 2105h: Factory settings	125
		A 6.3.3.9 Object 2132h: Laser power	125
		A 6.3.3.10 Object 2153h: Measuring distance	125
		A 6.3.3.11 Object 2154h: Measuring program	125
		A 6.3.3.12 Object 2165h: Edges segment	126
		A 6.3.3.13 Object 2181n: Averaging, error processing and statistics	
		A 0.3.3.14 UDJECT 21 BUIT: DIGITAL INTERTACES	
		A 0.3.3.13 Object 21D111: Value edge nign-low	129
		A 6.3.3 17 Object 21B3h: Value diameter	130

Α7	Activate Ethernet Interface	
A 6.10	Exit EtherCAT	
A 6.8	Meaning of STATUS-LED in EtherCAT Operation	
A 6.7	Oversampling	
	A 6.6.5 Apply Selected Settings A 6.6.6 Setting Regardless of TwinCat	
	A 6.6.4 Slave	
	A 6.6.3 Synchronization off	140
	A 6.6.2 Synchronization	140
	A 6.6.1 Introduction	
A 6.6	Distributed Clock	
A 6.5	Measurement Data Formats	
A 6 4	From Codes for SDO Services	
	A 0.3.3.32 Object 00001. Measuring values gap A 6.3.3.33 Object 6060h: Measuring values segment	
	A 0.3.3.3 I UDJECT 6067h: Measuring values diameter	
	A 6.3.3.30 Object 6066h: Measuring value edge low-high	
	A 6.3.3.29 Object 6065h: Measuring value edge high-low	
	A 6.3.3.28 Object 6060h: System values	
	A 6.3.3.27 Object 603Fh: Sensor error	
	A 6.3.3.26 Object 2711h: Range of interest	
	A 6.3.3.25 Object 2550h: Threshold	
	A 6 3 3 24 Object 2410h ⁻ Trigger mode	135
	Δ 6 3 3 23 Object 21E1h: Switching outputs	
	A 6.3.3.21 Object 21 Dun: Analog output	
	A 6.3.3.20 Object 21C0h: Ethernet.	
	A 6.3.3.19 Object 21B5h: Value segment	

1. Safety

System operation assumes knowledge of the operating instructions.

1.1 Symbols Used

The following symbols are used in these operating instructions.

	Indicates a hazardous situation which, if not avoided, may result in minor or moderate injury.
NOTICE	Indicates a situation that may result in property damage if not avoided.
	Indicates a user action.
i	Indicates a tip for users.
Measure	Indicates hardware or a button/menu.

1.2 Warnings

Connect the power supply and the display / output device according to the safety regulations for electrical equipment.

- > Risk of injury
- > Damage to or destruction of the sensor

NOTICE

Avoid shocks and impacts to the light source and the receiver.

> Damage to or destruction of the light source / receiver

Protect the cables against damage.

> Failure of the measuring device

The supply voltage must not exceed the specified limits.

> Damage to or destruction of the sensor

Avoid damage (scratches) to the protective windows of the light source and receiver through unsuitable cleaning-methods or cleaning solvents.

> Inaccurate, erroneous measuring values

Do not touch the protective windows of light source and receiver with the fingers. Wipe off any fingerprints immediately.

> Inaccurate, erroneous measuring values

Avoid permanent action of splashed water on the light source and the receiver.

> Damage to or destruction of the sensor

Avoid exposure to aggressive materials (washing agent, cooling emulsions).

> Damage to or destruction of the sensor

1.3 Notes on Product Marking

1.3.1 CE Marking

The following applies to the product:

- Directive 2014/30/EU ("EMC")
- Directive 2011/65/EU ("RoHS")

Products which carry the CE marking satisfy the requirements of the EU Directives cited and the relevant applicable harmonized European standards (EN). The product is designed for use in industrial and laboratory environments.

The EU Declaration of Conformity and the technical documentation are available to the responsible authorities according to the EU Directives.

1.3.2 UKCA Marking

The following applies to the product:

- SI 2016 No. 1091 ("EMC")
- SI 2012 No. 3032 ("RoHS")

Products which carry the UKCA marking satisfy the requirements of the directives cited and the relevant applicable harmonized standards. The product is designed for use in industrial and laboratory environments.

The UKCA Declaration of Conformity and the technical documentation are available to the responsible authorities according to the UKCA Directives.

1.4 Intended Use

- The optoCONTROL 2520 is designed for use in the industrial and laboratory areas. It is used for
 - measuring displacement, distance, position and thickness
 - in-process quality and dimensional testing
- The system must only be operated within the limits specified in the technical data, see 3.6, see 3.7.
- The system must be used in such a way that no persons are endangered or machines and other material goods are damaged in the event of malfunction or total failure of the system.
- Take additional precautions for safety and damage prevention in case of for safety-related applications.

1.5 Proper Environment

- Protection class: IP64; when plugged in or on the Ethernet socket with protective cap ¹
- The protection class is limited to water (no penetrating liquids, detergents or similar
- aggressive media).

Use a protective housing if the effects of water are continuous.

Optical windows are excluded from protection class. Contamination leads to impairment or failure of the function.

- Temperature range:

Operation:	0 +50 °C (+32 +122 °F)
■Storage:	-20 +70 °C (-4 +158 °F)
Humidity:	5 - 95 % RH (non-condensing)

- Ambient pressure: Atmospheric pressure

1) For operation without Ethernet / EtherCAT cable, the protective cap for the M12 connector must be plugged to achieve the IP degree of protection!

2. Laser Safety

The optoCONTROL operates with a semiconductor laser with a wavelength of 670 nm (visible/red). The maximum optical output power is \leq 2 mW.

The sensors fall within laser class 1M.

The accessible radiation is harmless under predictable conditions.

Do not view the radiation with optical instruments (e.g., converging lenses, magnifying glasses).

For class 1 laser devices, impairment of color vision and disturbances, e.g., from a glare effect, cannot be excluded.

Consequently, you can use Class 1M laser equipment without further protective measures.

Lasers of Class 1M are not subject to notification and a laser protection officer is not required.

The following warning labels must be attached to the cover (front and/or rear side) of the sensor housing. The laser warning labels for Germany have already been attached. For other non German speaking countries, an IEC standard label is included in delivery and the versions valid for the user's country must be attached before the device is put into operation for the first time.

Fig. 1 Laser warning sign and laser label

Fig. 2 Only for USA

Fig. 3 Sensor with laser labels

The housing of the optical sensors may only be opened by the manufacturer, see 11. For repair and service purposes, the sensors must always be sent to the manufacturer.

Fig. 4 True reproduction of the light source optoCONTROL 2520-95 with its actual location of the warning label.

 $\stackrel{\bullet}{l}$ If both warning labels are covered over when the unit is installed the user must ensure that supplementary labels are applied.

3. Functional Principle, Technical Data

3.1 Short Description

optoCONTROL 2520 is a laser-based sensor with an integral high resolution line scan camera for the measurement of geometrical quantities such as gap, edge position and diameter. By the high measuring rate and exactness measurements are also possible in quick processes.

The optoCONTROL 2520 sensor consists of a light source and a receiver, which are connected about a three-pole connection cable with each other. The receiver contains also the whole controller.

Fig. 6 Sensor optoCONTROL 2520-95

3.2 Measurement Principle

The optoCONTROL 2520 measures the dimension of a target or the position of an edge on a body according to the shadow principle and without making physical contact.

A parallel light curtain is produced with the laser light source, which sends a very homogeneous light by the high-quality illumination optics. The laser light source disposes of no moved parts, so that the sensor works nearly non-expendable.

Fig. 7 Measurement principle optoCONTROL 2520

The ODC line in the receiver reproduces the shadow principle of the target with high accuracy.

3.3 Block Diagram

Fig. 8 Block diagram sensor ODC 2520

The integrated electronics evaluates the signal of the ODC line and outputs the measuring values via the analog and digital interfaces.

For parametrization a web interface (Ethernet) and ASCII commands are available.

3.4 Functions

The optoCONTROL 2520 sensor supports the following functions:

- Edge measurement in shadow principle procedures (edge low-high; edge high-low)
- Diameter, width, gap width measurement
- Any segment situations or widths
- Freely selectable edges
- Direction of counting switchable
- Calculation of central axes between edges
- Counting of edges and segments (pins or gaps)
- Web diagram with user levels via web interface
- Ethernet / EtherCAT
- Data logger function
- Define the measurement range (to hide protruding machine parts)
- Triggering and synchronization
- Adjustable threshold
- Statistic values such as Min / Max, Peak to Peak and various types of averaging
- Output of up to 8 segments, 16 edge positions and their center axis at the same time

Diagram	Operating Mode	Description
Position / edge	Edge low-high	Position of first low-high edge (Distance to beginning of line)
Position / edge	Edge high-low	Position of first high-low edge (Distance to beginning of line)
Light source Beceiver	Diameter / width	Measure, position and central axis of an outer diameter or width of a metal (first low-high and last high-low edge)
Cap Beceiver	Gap	Measure, position and central axis of a gap (first high-low edge and next edge)
Light source	Any segments	Differences, positions and middle axis of any edges

3.5 Operating Modes

Fig. 9 Operating modes optoCONTROL 2520

You will find further informations to selection and parametrization at the measuring programs, see 6.4.3.

3.6 Technical Data ODC2520-46

Model		ODC2520-46	ODC2520-46(090)	
Measuring range		46	mm	
Min. target size		typ. ≥	0.5 mm	
Distance of light source	- receiver	With mounting ra	il 100 300 mm;	
(free space)		without mounting r	ail free to 2000 mm	
Measuring distance		20 mm 2000 mm: optimum (distances: 20. 50. 100. 150 mm	
(measured object - rece	eiver)	,		
Measuring rate		2.5	kHz	
		<u> </u>	2m	
Linearity ²		< ±1	<u>2μm</u>	
		Somiconductor k	µIII asor 670 pm (rod)	
Laser safety class		Laser class 1M ($P_{max} \le 2 \text{ mW}$) ac	cording to DIN EN 60825-1: 2014	
Permissible ambient ligi	nt	Approx.	20.000 IX	
Analog output		U + IU V NOT Electrica	Ily separated, 14 Bit D/A	
Digital interface		RS 422 (max. 4 MBaud), full du	plex, not electrically separated;	
Digital Interface		EtherCAT / EtherNa		
			y for orrors or limits	
Switching output			y for enfors of lifting,	
Switching Output		High level depends	aled, 24 V logic (ITTL),	
Circulinguit		Zeroing/mastering, resetting to factor	ry defaults; not electrically separated,	
Signal input		24 V logic (HTL), High level depends on supply voltage;		
		Irigin / Syncin (via KS422 level)		
Digital output		SyncOut symmetrcal, RS422 level,	terminating resistor (120 Onm) and	
		2 pip socket M9 for supply of light sources		
	Dessiver	3-pin socket Mi8 for s	supply of light source,	
Connection	Receiver	14-pin socket W10 for power supply & signals,		
	Light course			
Mounting	Light source	Mounting rail (see acces	sories) mounting holes	
Mounting	Storage	-20 +70 °C	$(-4 + 158 ^{\circ}\text{F})$	
Temperature range —	Operation	0 +50 °C (+	$41 + 122 ^{\circ}\text{F}$	
Supply voltage	oporation	+24 VDC (1	130 VDC)	
Max. current consumpti	on	<	1 A	
Shock (DIN-EN 60068-2	2-27)	15 g /	6 ms	
Vibration (DIN-EN 6006	8-2-6)	2 g / 20 .	500 Hz	
Protection class	Receiver /		64	
(DIN-EN 60529)	light source	IP	04	
Material	Receiver /	A 1		
Material	light source	Aluminun	n nousing	
Weight		1.25 kg (wit	hout cable)	
		Edge light-dark;	edge dark-light;	
Measuring programs		(outside) diameter / width incl. edges & center axis		
		gap / (inside diameter) incl. edges & center axis;		
		any segments incl. segment edges & center axes		
Control and display eler	ments	Web interface for setting	parameters and display;	
		color LEDs for Power on, Status, Speed, Link/activity		
_		Measurements server for tran	smission of several measure-	
Features		ments to	o the PC;	
		(optional other peripherv devic	es, see operating instructions)	

The data listed are for a consistent room temperature of 20 °C, sensor operating constantly, signal outputs open and sensor mounted on included mounting rail.

Measured at light source - receiver 300 mm, measured object - receiver distance 20 mm, operating mode: Edge lightdark

1) At the digital interface

- 2) Linearity (for distances between target and receiver: 20 mm < \pm 12 μ m / 50 mm < \pm 12 μ m / 100 mm < \pm 15 μ m / 150 mm < \pm 15 μ m, measured with 3 sigma.
- 3) Measured with a moving average over 32 values
- 4) Smallest detectable object, not measurable
- 5) Connection via interface module (see accessories)

3.7 **Technical Data ODC2520-95**

Model		ODC2520-95	ODC2520-95(270)	
Measuring range		95 r	nm	
Min. target size		tvp. ≥ 2.0 mr	m / 100 μm ⁴	
Distance of light source - receiver		With mounting rail 100 300 mm		
(free space)		without mounting ra	ail free to 2000 mm	
Measuring distance		20 mm 2000 mm; optimum c	listances: 20, 50, 100, 150 mm	
(measured object - receiver)				
Measuring rate		2.01	(Hz	
Resolution ¹		2 μ	m	
Linearity ²		< ±15 µm	< ±20 µm	
Repeatability ³		≤ 6	μm	
Light source		Semiconductor la	ser 670 nm (red)	
Laser safety class		Laser class 1M ($P_{max} \le 2 \text{ mW}$) acc	cording to DIN EN 60825-1: 2014	
Permissible ambient light		Approx. 1	5.000 lx	
Analog output		0 +10 V not electrical	ly separated, 14 Bit D/A	
Digital interface		RS 422 (max. 4 MBaud), full du	olex, not electrically separated;	
		Ethernet, electri	cally separated	
		EtherCAT / EtherNe	t/IP 5 / PROFINET 5	
Switching output		2 outputs, optionally	r for errors or limits,	
		not electrically separa	ted, 24 V logic (HTL),	
		High level depends	on supply voltage	
Signal input		Zeroing/mastering, resetting to factor	y defaults; not electrically separated,	
		24 V logic (HTL), High level o	depends on supply voltage;	
		IIIgiii / Syncin (Via H5422 level)		
		SyncOul synnelical, RS422 level, ler	not electrically separated	
Connection	Receiver	3-pin socket M8 for si	upply of light source	
	10001101	14-pin socket M16 for p	ower supply & signals.	
		4-pin socket M12x1 fc	r Ethernet /EtherCAT	
I	_ight source	3-pin socket N	//8 for supply	
Mounting	-	Mounting rail (see acces	sories), mounting holes	
Temperature	Storage	-20 +70 °C (-4 +158 °F)	
range	Operation	0 +50 °C (+	32 +122 °F)	
Supply voltage		+24 VDC (11	30 VDC)	
Max. current consumption		< 1	A	
Shock (DIN-EN 60068-2-27)		6 g / 6 ms in X, Y, Z axis, 1000 shocks each		
Vibration (DIN-EN 60068-2-6	6)	2 g / 10 500 Hz in X, Y, Z axis, 10 cycles each		
Protection class	Receiver /	IPe	64	
(DIN-EN 60529)	light source			
Material	Receiver /	Aluminum	housing	
	light source			
Weight		2.0 kg (with	iout cable)	
Measuring programs		Edge light-dark;	edge dark-light;	
		(outside) diameter / width	Inci. edges & center axis	
		gap / (inside diameter) ir	ici. euges & center axis;	
Control and display alamant	e	Web interface for setting	narameters and display:	
		color I FDs for Power on S	tatus Speed Link/activity	
Features		Measurements server for transmission	of several measurements to the PC.	
		(optional other periphery devic	es. see operating instructions)	

The data listed are for a consistent room temperature of 20 °C, sensor operating constantly, signal outputs open and sensor mounted on included mounting rail.

Measured at light source - receiver 300 mm, measured object - receiver distance 20 mm, operating mode: Edge lightdark

1) At the digital interface

2) Linearity (for distances between target and receiver): 20 mm $< \pm 15 \,\mu$ m / 50 mm $< \pm 20 \,\mu$ m / 100 mm $< \pm 20 \,\mu$ m / 150 mm $< \pm 20 \,\mu$ m; measured with 3 sigma

3) Measured with a moving average over 32 values
4) Smallest detectable object, not measurable 5) Connection via interface module (see accessories)

4. Delivery

4.1 Unpacking, Included in Delivery

- 1 Light source
- 1 Receiver
- 1 Mounting rail
- 1 Accessories bag /mounting kit with mounting screws
- 2 Laser warning labels USA and EU area
- 1 Assembly instructions
- 1 Test report
- Carefully remove the components of the measurement system from the packaging and ensure that the goods are forwarded in such a way that no damage can occur.
- Do not touch the optical windows. Dirt on the optical window will eventually affect
- 1 the functionality.
- Check the delivery for completeness and shipping damage immediately after unpacking.
- If there is damage or parts are missing, immediately contact the manufacturer or supplier.

Optional accessories are available in the appendix, see A 1.

4.2 Notes about Cables

Cables are optional accessory, see A 1.

- To connect the light source with the receiver a cable CE2520 is required.
- To connect the power supply and the periphery a cable PC/SC2520 is required.
- Always recommended for commissioning, required for the Ethernet interface: Digital output cable SCD2520-3

4.3 Storage

- Temperature range storage: -20 ... +70 °C (-4 ... +158 °F)
- Humidity: 5 to 95 % RH, non-condensing

5. Mounting

5.1 General

The optoCONTROL 2520 sensor is an optical system used to measure in the mm range.

• Ensure careful handling during installation and operation.

NOTICE

Do not touch the optical windows.

> Functionality impaired due to contamination.

No sharp or heavy objects should be allowed to affect the cables. Avoid folding the cables.

> Damage or destruction of the cable, failure of the measuring device

Do not deceed the bending radius of 60 mm.

Mount the sensor only to existing holes on a flat surface. Clamps of any kind are not permitted.

> Inaccurate, erroneous measuring values

The connection cable between light source and receiver and the Ethernet cable are not cable carriers suitable.

5.2 Light Source and Receiver

5.2.1 Dimensions

Fig. 10 Dimensional drawing optoCONTROL 2520-46, dimensions in mm (inches)

Fig. 11 Dimensional drawing optoCONTROL 2520-46(90), dimensions in mm (inches)

Light source and receiver can be attached using the three through-holes ø 4.5 mm each (bolt connection) or, if the mounting rail is not used, using the four M4 threaded holes in each housing bottom, which ensure a maximum screwing depth of 5 mm (direct screw connection).

Also observe the additional information and notes on this topic in the next two chapters!

Fig. 12 Dimensional drawing optoCONTROL 2520-95, dimensions in mm (inches)

Light source and receiver can be attached using the three through-holes $\emptyset 4.1 + 0.3$ mm each (bolt connection) or the M5x10 threaded holes on both sides (direct screw connection). The mounting rail also features several $\emptyset 4.5$ through-holes that are countersunk at $\emptyset 8$ and M4 threaded holes to attach/receive the measuring system, see Fig. 12.

Alternatively, if the mounting rail is not used, the four M4 threaded holes in each housing bottom, which ensure a maximum screwing depth of 5 mm, can be used for attachment.

Also observe the additional information and notes on this topic in the next two chapters! \mathbf{l}

Fig. 13 Dimensional drawing optoCONTROL 2520-95(270), dimensions in mm (inches)

The dimension 15.5 mm deviates with this option (standard 14 mm).

1

5.2.2 Mounting on DIN-Rail

The sensor unit, consisting of the light source, receiver and mounting rail, is pre-assembled, see Fig. 14. The light source can be fitted to the mounting rail at two different distances to the receiver.

The adjustable distance between the light source and receiver is with rail 100 ... 300 mm.

The alignment with each other is ensured by the 10 mm wide and 0.7 mm high guidance on the mounting rail.

Fig. 15 Light source and receiver optoCONTROL 2520-46(090) with mounting rail , dimensions in mm (inches)

The mounting rail must be fixed so that it is not bended respectively twisted.

A horizontal measurement arrangement reduces contamination on the optical system and should therefore be preferred.

Please refer to the previous drawings, for the assembly drawing of the optoCONTROL 2520-95 and the option optoCONTROL 2520-95(270) for mounting on the DIN rail, see Fig. 12, see Fig. 13.

5.2.3 Free Mounting

It is generally recommended to install the sensors with the mounting rail screwed on first. You can remove it after the system has been set.

If the light source and receiver have to be mounted without the supplied mounting rail, ensure that the components are precisely aligned with each other or with the surfaces that would otherwise sit on the mounting rail or, viewed from the side, over the 3 surfaces of the domes on the light source and receiver.

If distances greater than the standard system distance of 300 mm (with mounting rail) or 2000 mm (without mounting rail) are implemented, the linearity values, see 3.6, see 3.7, specified in the technical data are no longer binding. Higher deviations must be expected, which always depend on the quality of the alignment/mounting of the system and the realized system distance.

With free mounting, a greater distance between the light source and the receiver is possible with reduced linearity. The maximum distance (free space) between the light source and receiver is 2 m.

The threaded depth in each light source and receiver is 5 mm. For bolting on, the three 4.5 mm through holes in both components can be also used. The supplied screws should be used for fixing.

- The light source and receiver must lie in one plane and must not be tilted with re-
- spect to another.

Use squares or rails for alignment of light source and receiver.

Control and adjust the centered alignment of the light beam at the receiver after installation of the light source and of the receiver in the correct displacement. You may loosen the light source for an accurate positioning if required.

You may control the concentric orientation of the light beam both in the horizontal and the vertical orientation.

For this purpose, MICRO-EPSILON Eltrotec GmbH recommends, to keep a white paper as a projection plane ahead of the receiver and to cover the window halfway through, see Fig. 16. For orientation the glued-in window can be used. The light beam should illuminate this symmetrically.

Fig. 16 Adjustment controlling with white paper in front of the receiver, the left vertical and right horizontal orientation

- The laser light must hit concentric on the entry window of the receiver.
- 1 The greater the distance between light source and receiver, the more accurate must be aligned!

5.2.4 Calibrated Measuring Distances

The sensor optoCONTROL 2520 is calibrated to 4 different measuring distances (distance between target and receiver):

Fig. 17 Calibrated measuring distances ODC 2520, example optoCONTROL 2520-46

The calibrated measurement distances apply for the optoCONTROL 2520-46, the optoCONTROL 2520-46(090) option, the optoCONTROL 2520-95 and the optoCONTROL 2520-95(270) option:

20 mm (Standard setting), 50 mm, 100 mm, 150 mm

For accurate results, the target should be located as possible in one of these distances.

If the measuring distance changes during the measurement or if the target edge has a large thickness parallel to the laser beam, a considerable linearity error can occur.

The distance between target and receiver can be set via the web interface.

If necessary, choose the closest distance.

5.3 Electrical Connections

5.3.1 Receiver

Decould area	Ethernet/ EtherCAT	Connection to a PC or PLC
	Power/ signals	Power supply, switching outputs, zeroing/mastering, synchronization/ triggering, RS422, analog output
	Light source	Power supply light source (laser)

Fig. 18 Female connector arrangement on ODC 2520-46, receiver

	Ethernet/ EtherCAT	Connection to a PC or PLC
E Ether CATE / Change	Power/ signals	Power supply, switching outputs, zeroing/mastering, synchronization/ triggering, RS422, analog output
	Light source	Power supply light source (laser)

Fig. 19 Female connector arrangement on ODC 2520-95, receiver

The female connectors are labeled and designated on the labels of the receiver.

- For operation without Ethernet / EtherCAT cable, the protective cap for the M12
- 1 connector must be plugged to achieve the IP degree of protection!

5.3.2 Light Source

The light source is supplied by the receiver.

Fig. 20 Female connector on ODC 2520-46, light source

Fig. 21 Female connector on ODC 2520-95, light source

- Connect the light source and receiver, female connector Light source, before switching on the power supply.
- Use only the connection cable CE2520-x or CE2520/90-x by MICRO-EPSILON Eltro-
- tec GmbH, cable length x = 1, 2 or 5 m.

To connect the light source to the receiver, there are differently long three-pole connection cables according to order, each optional with either straight (CE2520-x) or angled connectors (CE2520/90-x).

Fig. 22 Connection cable on ODC 2520¹ with straight and angled connectors

1) Example optoCONTROL 2520-46

5.3.3 Connection Possibilities

by peripheral.

Fig. 23 Connection examples on ODC 2520-46

The same connection options apply to the optoCONTROL 2520-95 measuring system; Various peripheral devices, see Fig. 23, let themselves connect with the shown connection cables at the 14-pin female connector <code>Power / signals</code>. The devices PCI interface card IF2008/PCIE, 4-channel IF2004/USB converter supply the sensor with the supply voltage (24 V DC) via the suitable connection cable.

Periphery	Sensor channels	Interface
IF2001/USB	one	
IF2004/USB	four	R6400
IF2008/PCIE (interface card)	four	R5422
IF2008/ETH	eight	
IF2035/xxx	one	RS422/EtherNet/IP/PNET
Ethernet (network, PC)	any	Ethernet
EtherCAT (Master)	any	EtherCAT
PLC, signal light, ejector or the like		Switching outputs (Out 1/2)
Switch, button, PLC, or the like		Switching input (In)
AD amplifier, PLC, high impedance display etc.		Analog output (voltage)

Fig. 24 Max. sensor channels on the periphery devices

5.3.4 Power Supply, Inputs/Outputs, RS422

The power supply and the input/output at sensor is effected by the 14-pin. female connector on receiver.

Signal	Description	Comments	Color on cable PC/SC2520-3	Pin
+24 V DC	Supply voltage	11 30 VDC, <i>I_{max}</i> < 200 mA at 24VDC ³	Red	E
GND	Supply voltage ground	Ground reference for power, Out, In, Sync, RS422	Black	R
Out 1	Switching output 1	Error or limits, not electrically isolated, 24V logic (HTL), $I_{max} = 0.1 \text{ A}, V_{max} = 30 \text{ V}$	Blue	Ρ
Out 2	Switching output 2	Saturation voltage at $I_{max} = 0.1$ A: Low < 2.5 V (output GND), High < 2.5 V (output - supply voltage)	Pink	0
In	Zeroing/mastering or reset to factory settings	not electrically isolated, 24V logic (HTL), Low level \leq 3 V, High level \geq 10 V (max 30 V),	Gray/pink	Т
		Internal Pull-up resistor, open input is recognized as High.		
Sync In/out	Synchronization or triggering, Synchronous	Symmetrical, RS422 level, load resistance (120 Ohm) and direction via soft-	White/green	U
/Sync In/out	output	ware switchable, not electrically isolated	Red/blue	L
RX - 422	RS422	Interface RS422, symmetrical,	Brown	М
/RX - 422		RX internally terminated with 100 Ohm,	Green	A
/TX - 422		not electrically isolated	Yellow	N
TX - 422			Gray	С
GND- RS422		Equipotential equalization RS422 / Sync when none other galvanic connection is available.	Violet	J
Analog Out	Voltage output	0 10 V, not electrically isolated, 14 Bit D/A, R _i approx. 50 Ohm, Load: C ₁ < 22 nF, R _a >10 kOhm	White ¹	S
Analog GND	Ground analog output	Ground reference for voltage output	Inner shield ¹	G
PE	Total outer shield	Connect with PE of the system	Black ²	Housing

Fig. 25 Pin assignment 14-pin. round male connector (Power / signals)

Male cable connector view on solder pin side

optoCONTROL 2520-46 and optoCONTROL 2520-95

MICRO-EPSILON Eltrotec GmbH recommends the cable carriers suitable multifunction cable PC/SC2520-3. It has both an internal coaxial cable for the analog output as well as the right matched twist for the RS422 interface and synchronization.

- 1) Internal coaxial cable for voltage output in PC/SC2520-3.
- 2) Shrinking hose with wire end
- 3) With open switching outputs

5.3.5 Power Supply

- Operation voltage: 11 ... 30 VDC
- Current consumption: I max < 1 A
- Use the current supply only for measuring devices, not at the same time for drive units or similar impulse interference sources. MICRO-EPSILON Eltrotec GmbH recommends the power supply PS2020 or PS2031.

Fig. 26 Connection power supply, example ODC2520-46

After switching on the power supply the Power on LED lights, see 5.4.

5.3.6 Ethernet, EtherCAT

Potential-separate M12 female connector for connection of ODC 2520 receiver with an Ethernet network (PC) or with an EtherCAT bus system.

Pin	Signal		Power on C
1	TX+		Ether CAT
2	RX+		
3	TX-		
4	RX-	4-pin built-in socket, view of connector side or 4-pin cable plug, view of solder side	

Fig. 27 Ethernet/EtherCAT socket, optoCONTROL 2520-46 and 2520-95

MICRO-EPSILON Eltrotec GmbH recommends the Ethernet cable SCD2520-3, see 4.2.

For operation without Ethernet / EtherCAT cable, the protective cap for the M12 connector must be plugged to achieve the IP degree of protection!

5.3.7 Wiring Switching Input

The switching input IN can be wired as follows:

Fig. 28 Wiring of switching input (schematic)

Signal	Description	Comments	Color on cable PC/SC2520-3	Pin	
In	Zeroing/ mastering or reset to factory settings	not electrically isc 24V logic (HTL), L High level \ge 10 V Internal Pull-up re open input is reco	olated, .ow level ≤ 3 V, (max 30 V), sistor, ognized as High.	gray/pink	Т
Switchir an oper	ng input is not isola n input is recognize	ated galvanically, ed as high.	This input, for a nected with GN	appropriate time co ID, triggers differer	on- nt

		operations:	D, inggoro amoroni
24 V logic (HTL)		Time < 2 s	Mastering Reset statistic values
Low level	≤ 3 V	Time 2 s up to 5 s	Reset mastering Reset statistic values
High level	≥ 10 V (max 30 V)	Time > 10 s	Rest to factory settings

 $\stackrel{\bullet}{l}$ A reset to the factory settings using the switch input requires the professional user level.

5.3.8 Wiring of the Switching Outputs

The two switching outputs Out1/Out2 can be wired a s follows:

Fig. 29 Wiring of the switching outputs (schematic)

The switching behavior (NPN, PNP, push-pull) is programmable, see 7.6.4.

The NPN output is for example suitable for the adaptation to a TTL logic with an auxiliary voltage $V_{\rm H} = 5$ V.

The switching outputs are protected against reverse polarity, overload (< 150 mA), over temperature and have an integrated free-wheeling diode for inductive loads.

Signal	Description	Comment	Color on cable PC/SC2520-3	Pin
Out 1	Switching output 1	Error or limits, not electrically isolated, 24V logic (HTL), $I_{max} = 0.1 \text{ A}, V_{max} = 30 \text{ V}$	blue	Ρ
Out 2	Switching output 2	Saturation voltage at $I_{max} = 0.1$ A: Low < 2.5 V (output GND), High < 2.5 V (output - supply voltage)	pink	0

5.4 LEDs on Receiver

LED	Color	Meaning	Adjustment	
	Green	Supply voltage on		
Power on	Yellow	with synchronization error		
Status	Red flashing	Ethernet, interference	Power pp	
	yellow	Load factory settings	Ett. Status	
	Green	Zeroing / mastering	- Uner CATEN	
	With active E ing depends see A 6.8.	therCAT interface, the mean- on the EtherCAT guidelines,	Vetherner	
Speed	Yellow	Baud rate 100 Mb		
	Off	Baud rate 10 Mb	optoCONTROL 2520 46 upd	
Link/activity	Green	Active link	optoCONTROL 2520-46 und	
Off Inactive link		Inactive link]	
	Flashing	Network activity		

6. Operation

6.1 Initial Operation

- Connect the light source and receiver with connection cable, see 5.3.
- Connect the sensor to a power supply 24 V DC, see 5.3.5.
- Switch on the power supply.

After switching on the sensor the initialization follows. After approx. 10 s the sensor is ready for use.

The configuration is possible over in the web pages integrated in the sensor, by means of ASCII instructions or EtherCAT objects. A parallel operation via web browser and ASCII commands is possible; the last setting applies. MICRO-EPSILON Eltrotec GmbH recommends to adjust the sensor over the integrated web page, see 6.2.

Let the sensor warm up about 30 min for precise measurements.

6.2 Control via Ethernet

6.2.1 Requirements

Dynamic web pages are generated in the optoCONTROL 2520 which contain the current settings of the controller and the peripherals. Operation is only possible while there is an Ethernet connection to the optoCONTROL 2520.

You need a web browser (e.g. Mozilla Firefox or Internet Explorer) on a PC with a network connection. To support a basic first commissioning of the optoCONTROL 2520, the optoCONTROL 2520 is set to a direct connection.

If you have configured your browser to access the internet via a proxy server, in the browser settings you will need to add the IP address of the optoCONTROL 2520 to the list of addresses which should not be routed through the proxy server. The MAC address of the unit can be found on the nameplate of the optoCONTROL 2520 and on the test certificate calibration report.

Javascript must be enabled in the browser so that measurement results can be displayed graphically.

Direct connection to PC, static IP (factory setting)			tting)	Network		
PC with static IP		PC with DHCP		Sensor with dynamic IP, PC with DHCP		
	Connect the sensor to a PC using a dir (LAN). To do so, use the SCD2520-3 ca sories.	ect E able	Ethernet connection in the optional acces-		Connect the sensor to a switch using a direct Ethernet connection (LAN). To do so, use a SCD2520-3 cable.	
This http	Start the program sensorTOOL, see Fig. 30. s program is available online at s://www.micro-epsilon.com/fileadmin/	Wai esta con with	it until Windows has ablished a network inection (connection in limited connectivity).	IP a You	Enter the sensor in the DHCP/register the sensor with your IT department. ddress assignment by your DHCP server. can query this IP address with the pro-	
	In the Sensor group dropdown menu, select optoCONTROL, in the Sensor type dropdown menu, select optoCONTROL ODC2520. Click the button. Now select the desired ODC2520 from the list. To change the address settings, click the Configure sensor IP button. • IP type: Static • IP address: 169.254.168.150 ¹ • Subnet mask: 255.255.0.0 • Gateway: 169.254.1.1 Click the Apply button to transmit the changes to the ODC2520. Click the Open Website button to display the web page of the sensor in your standard browser. Alternatively		Start the program sensorTOOL, See Fig. 30. In the Sensor group dropdown menu, select op- toCONTROL, in the Sensor type dropdown menu, select optoCONTROL ODC2520. Click the Image button. Now select the de- sired ODC2520 from the list. Click the Open Website button to display the web page of the sensor in your standard browser.	grai	 m sensorTOOL. Start the program sensorTOOL, see Fig. 30. In the Sensor group dropdown menu, select optoCONTROL, in the Sensor type dropdown menu, select opto- CONTROL ODC2520. Click the example button. Now select the desired ODC2520 from the list. Click the Open Website button to dis- play the web page of the sensor in your standard browser. When using DHCP with the DHCP serv- oupled to the DNS server, access to the sor is possible using a host name with structure "ODC2520_SN<serial num-<br="">>".</serial> Start a web browser on your PC. To reach an ODC2520 with serial num- ber "01234567" type "ODC2520 	
	your standard browser. Alternatively, change the IP settings according to the settings on your PC (IP address ranges must match).				SN01234567", type "ODC2520_ SN01234567" into the address bar of the browser.	

Interactive web pages for setting the sensor and peripherals are now shown in the web browser.

1) Requires that the LAN connection on the PC uses, for example, the following IP address: 169.254.168.1.

k sensorTOOL 1.6.0			- 🗆 X
			sensorTOOL
Connections	© < _	Search Results ((1)
Sensor group optoCONTROL Sensor type optoCONTROL ODC2520 Scan Options General interfaces Quick scan RS485 Enable logging Single sensor DAQ mode Load sensor protocol	× ×	optoCONTROL ODC2520 @ IP 169.254.168.150 Parameters Sensor type: ODC2520 Serial number controller: 02006503	Raw Parameter View Start Data Acquisition Compose Website Configure sensor IP
Ready			

Fig. 30 Auxiliaryprogram sensorTOOL for sensor search

6.2.2 Access via Ethernet

Use the upper navigation bar to access features (settings, video signal etc.).

All settings on the web page are applied immediately in the sensor after pressing the Submit button.

Fig. 31 First interactive web page after calling the IP address

Parallel operation with keyboard and web browser is possible; the last setting applies. Do not forget to save your settings.

The appearance of the web pages may vary depending on functions and peripherals. Each page contains parameter descriptions and tips on configurating the optoCON-TROL 2520.

6.2.3 Measuring Value Presentation with Ethernet (Web Browser)

Diagram control and display are loaded in the browser and runs there autonomously, while the optoCONTROL 2520 regardless continues to operate and provides measuring values.

- Start Measurement display in the horizontal navigation bar.
- $\stackrel{\bullet}{l}$ By letting the diagram display run in a separate tab or browser window, you avoid having to restart the display every time.
- Click the Start button, if the measurement or display of measurement results have not started automatically.

Fig. 32 Displaying measurement results, program Diameter/Width
6.3 Video Signal

6.3.1 Light Source Reference

The light source reference is to be performed once after the assembly. In modified ambient light and high precision requirements, a more frequent repetition is recommended. The light source reference ensures an appropriate laser power, a good ambient light correction as a basis for accurate measurements and a relatively uniform light corrected signal.

To detect the light signal, the sensor requires a warm-up time of approximately 30 min.

- There must not be any object between the light source and the receiver when
- executing the light source reference. If this is not possible, a suitable masking of the evaluation area is possible, see 7.13. The light source reference is accessible only from the web page Video signal.

Confirm the button Start light source reference in the web page Video signal > Light source reference.

Fig. 33 Web page Light source reference

After end of the light source reference, the corrected signal (green) shows a straight line. At the same time the Undo button is released. The result of the adjustment is saved. The previous adjustment can be restored via Undo.

6.3.2 Video Signal, Edge Detection

Click on the tab Video signal in the top navigation bar.

Fig. 34 Web page Video signal

The Video signal web page includes the following functions:

- 1 Start measuring video signals by clicking the Start button (bottom left) and end it by clicking Stop.
- 2 Use the Save button to save the displayed graph in CSV format (time stamp and captured values). This will open the Windows dialog box for selecting a location and file name.
- 3 In the window on the left, the video graph can be enabled or disabled (both during and after measuring):
 - Raw signal (uncorrected CCD signal, red),
 - Light source corrected signal (green)
 - Light values table (table generated in response to light referencing, brown),
 - · Detection threshold (orange).
 - Edge marker
 - Masked evaluation range
- 4 In the window on the left you can quickly adjust detection threshold (in %). You can optionally increase the detection threshold to measure a transparent target with reduced linearity. Please do not change as possible. Click Submit to accept the new values.
- 5 Auto (= automatic scaling) or Manual (= manual setting) allow for scaling the intensity axis (Y axis) of the graph.
- 6 From the Video signal page, you can launch the Light source reference and Masking features directly.
- 7 Status Display
 - Green: OK; data transfer is active
 - Yellow: data transfer is stopped
 - Red: sensor connection is disturbed
- 8 The light source corrected video signal of the receiver line is displayed in the right diagram. The left is the beginning of the line (0) close to the rails and the right the upper end of line (100), see Fig. 10.
- 9 The detection threshold is a horizontal straight line that corresponds to the preset value. For a measurement at least one transition from low to high or vice versa should be visible in the corrected video signal, which intersects the horizontal detection threshold.

- 10 Relevant edges for the selected measuring program are marked with a colored vertical line corresponding to the segment. Thus, the respective segment edges in the video signal can be identified, see Fig. 35.
- 11 X axis scaling: The diagram displayed above is zoomable with both sliders on the right and on the left side in the lower total signal. Move it sideways also with the mouse in the center of the zoom window (cross arrow).

The following measurement was performed with the Segments program, see 7.2. Together with the Masking function, see 7.13, and the segment definition, see 7.2.2, sections of a target can be selected for the evaluation. Thereby a segment can extend over several edges. Coloring the edges enables a fast assignment of the edges in the video signal.

Fig. 35 Video signal with defined segments

6.4 User Interface, Basic Preferences

6.4.1 Introduction

The following chapters describe any controller settings that are required to get starts and quickly achieve first measuring results.

You can access additional submenus, e.g. for measuring rates and triggers, through the navigation bar on the left side of a web page.

 When programming has been completed, store all settings permanently in a set of parameters to ensure that these settings are available when the sensor is switched on the next time or the measurement is restarted.

For details about other measuring control settings and features, such as setting masters or triggers in the Chapter Advanced settings, see 7.

6.4.2 Measurement Distance

The measurement device optoCONTROL 2520 was calibrated for several distances and the corresponding calibration tables have been saved.

For accurate results, the target should be located at a set distance from the receiver.

Calibrated measurement distances: Target - receiver: 20 mm, 50 mm, 100 mm, 150 mm

Select a calibrated distance from the list, confirm with Submit.

Calibrated measurement distances between target and receiver: 20 mm, 50 mm, 100 mm, 150 mm.

Home Preferences M	easurement Video signal Help / Info	opto <mark>CONTROL</mark> 252	
Login	Preferences > Measuring distance		🔒 Save Setup
Measuring distance	Measuring distance		
Averaging / error handling / spike correction / statistics			
Zeroing / mastering	Distance target - receiver	50 mm 👻	
Digital interfaces		Submit	
Switching outputs			
Analog output			
Output-data rate	The device is calibrated for several pre-s	set distances and the appropriate calibration tables are store s, target should be positioned in selected distance. Otherwise	d permanently. The closest possible
Trigger mode	distance should be chosen.		
Synchronization			

Fig. 36 Setting of measuring distance

Linearity uncertainties may occur,

- if the measurement distance changes during the measurement or
- the edge to be measured has a large thickness in parallel to the laser beam.

Fig. 37 Definition target thickness

6.4.3 Measurement Program

6.4.3.1 Definitions

The measurement programs, which measure more than one edge, the positions of both single edges (edge A and B) as well as their center axis (average from edge A and B) can be output also beside the difference (diameter, gap or segment width).

Fig. 38 Definition of terms for the measurement programs, standard method of counting the edges in search direction and measuring direction

Fig. 39 Measurement programs optoCONTROL 2520

D = Difference from edge A and B,

M = Middle axis from edge A and B

6.4.3.2 Program Selection

➡ Go to the Preferences menu > Measurement program.

Home Preferences	Measurement Video signal Help / Info	optoCONTROL 2520
Login	Preferences > Measurement program	🕞 Save Setup
Measuring distance Measurement program	Measurement program	
Averaging / error handling / spike	Measurement task:	Diameter / Width 👻
correction / statistics	Search direction of the edges:	Standard (from rail)
Zeroing / mastering	Measuring direction of the edges:	Standard (from rail)
Digital interfaces		
Switching outputs		Submit
Analog output		
Output-data rate	Measurement task	
Trigger mode	The selection of the output data is in Select	Pata .
Synchronization		L Data.

Measure- ment task	Edge low-high / edge high- low / diameter width / gap	Search di- rection of the edges	Standard (from rail) / Opposite	Selection of light transitions to define the desired measurement parameter
		Measuring direction of the edges	Standard (from rail) / Opposite	
	Any Segments	Search di- rection of the edges	Standard (from rail) / Opposite	
		Measuring direction of the edges	Standard (from rail) / Opposite	
		Definition segments	Segment 1 seg- ment 8 edge A	Edge number
			Segment 1 seg- ment 8 edge B	Edge number

 $\stackrel{\bullet}{l}$ The selected measurement program is used as the standard measurement program on startup.

Select the desired measurement program e.g. Edge low-high and confirm with Submit.

The selection of data to be output for each measurement program is made by clicking on the link to the web page Data selection diagram, see 7.5.3.

Fields with a gray background require a selection.

6.4.3.3 Change Search and Measuring Direction of Edges

The search direction determines the numbering respectively the sequence of edges, see Fig. 40. For certain installation situations, it may be useful to change this setting - for example, if not the first, but the last edge should be measured.

Fig. 40 Search direction of edges (examples)

The measuring direction determines the calculation of the measuring value, see Fig. 41.

For certain measurement tasks it may be useful to change the setting - for example, if the deviation of an edge is to be calculated in the opposite direction.

Fig. 41 Measuring direction of edges (examples)

6.5 Measurements with Web Page Display

- Place a target in the selected measuring distance to the receiver, possibly in the middle of the range.
- Pay attention to correct alignment of the sensor to the target.

Click on Measurement menu in the top navigation bar.

You will see a web page with a timing diagram of measurement, according to the selected measurement program and the corresponding parameters, see Fig. 42.

Fig. 42 Web page Measurement, example any segments

The web page includes the following functions:

1 Start the measurement by pushing the Start button (bottom left), end by clicking Stop.

With the Save button the indicated measuring curves from (2) can be saved in the CSV format (time stamp and measuring values). Besides, the Windows selection dialog for data name and memory place opens.

- 2 In the window on the left, the result graphs can be enabled or disabled (both during and after measuring). The selection for the graphic display is effected by the link Data selection diagram.
- 3 In the window on the left, the type of averaging and the number of values can be set. Press Submit to accept the value.
- 4 The functions Mastering and Zeroing can be performed during the measurement. With the link Zeroing / mastering go to the menu Preferences > Mastering / Zeroing. There, you specify the signal to which the Zeroing respectively Mastering function is applied. Masters or zero setting is done with the Set master value respectively Reset master value button.

The Mastering and Zeroing setting function is limited to the listed signals in the Data selection diagram (2).

- 5 Auto (= automatic scaling) or Manual (= manual setting) allow for scaling the intensity axis (Y axis) of the graph.
- 6 The current values of the selected signals (2) are displayed. The statistic values minimum, maximum and peak-to-peak of the last evaluation range refer to the selected statistic signals, see 7.3.
- 7 Status Display
 - Green: OK; data transfer is active
 - Yellow: data transfer is stopped
 - Red: sensor connection is disturbed
- 8 Representation of the signals in time diagrams.
- 9 Displayed time range for the graphical representation, value range from 0.1 to 20 s.
- 10 X axis scaling: The diagram displayed above is zoomable with both sliders on the right and on the left side in the lower total signal. Move it sideways also with the mouse in the center of the zoom window (cross arrow).

The manipulations in the diagram can be carried out with running as well as standing measurement (Stop). The Save function is only possible with finished measurement.

6.6 Save / Load Settings in Sensor

6.6.1 **Preliminary Remarks**

In this menu you can save current device settings to the controller and recall saved settings. You can permanently save eight different parameter sets in the controller.

Home Preferences N	Neasurement Video signal Help / Info	optoCONTROL 2520
Login	Preferences > Save / Load setup	🕞 Save Setup
Measuring distance	Save / Load setup	
Measurement program		
Averaging / error handling / spike correction / statistics	Setup no.: Keep interface settings:	1
Zeroing / mastering		Load setup
Digital interfaces		Save setup
Switching outputs		
Analog output		
Output-data rate	Settings in the sensor permanently sto There may be several different setups to	tore. Unsaved settings are lost when. to be stored. When switching on the last saved setup is loaded.
Trigger mode		
Synchronization	If the checkbox is active, the settings for	or language, password, analog output and network will kept.
	Load setup	
Save / Load setup	By clicking this button the selected setu	tup file is loaded in the sensor.
Manage setups on PC	Save setup	
Extras	Clicking this button saves the settings i	in the selected setup file.

Fig. 43 Web page Save / Load setup

6.6.2 Save in Sensor

Current settings are saved in the sensor using the selected parameter set number. We recommend saving settings after programming the sensor, as the settings will be lost when the controller is switched off.

How to load settings:

Select the required parameter set.

Click the Save setup button.

The current settings are even available in the sensor after switching off / switching on.

For a fast saving to the last saved setup use the <code>Save setup</code> button in every preferences page.

 $\overset{\bullet}{l}$ Switching on the sensor loads the set of parameters that was last saved in the sensor.

6.6.3 Load from the Sensor

The settings that are saved for the selected parameter setup number in the controller are enabled.

How to load settings:

Select the required setup no. of parameters.

Only maintain interface settings, if the sensor is used with the same network and RS422 baud rate. If the checkbox is enabled, the settings for language, password, analog output and network.

Select the Keep interface settings checkbox if desired.

Click the Load Setup button.

The sensor uses the settings from the selected parameter set.

7. Advanced Settings

7.1 Login, Switching User Level

7.1.1 Preliminary Remarks to Password Protection

Assigning passwords prevents unauthorized changes to sensor settings. Password protection is not enabled as a factory setting. The sensor works on the User level. After the sensor has been configured, you should enable password protection. The standard password for the user level is "000".

A software update will not change the standard password or a custom password. The user level password is setup-independent, and is not loaded or saved during setup. When an professional restores the factory settings (Preferences menu > Extras > Factory Settings), the professional level password is reset to 000.

User can do the following:

	User	Professional
Password required	no	yes
View settings	yes	yes
Change settings, change password	no	yes
View measuring values, video signal	yes	yes
Scale graphs	yes	yes
Restore factory settings	no	yes

Fig. 44 Permissions within the user hierarchy

7.1.2 Change User Level

Go to the Settings > Login **menu**.

User > professional	Professional > user
Login Currently, you are logged as user Password for login: Login	Login Currently, you are logged on as Professional. Change to user level: Logoff Change password>> User level at restart: Professional Submit
Enter the standard password 000 or a custom password into the Pass- word box, and click Login to confirm.	Click on Logoff button.
Fix in the User level at re- start field, in which user level the sensor should work after a restart.	
Click on the Save setup button to sa	ave the user level permanently.

7.1.3 Password Assignment

In ${\tt Professional}\ {\tt mode},$ you can use the change password features to assign a custom password.

Password	Value	All passwords are case-sensitive. Numbers are al- lowed, but special characters are not permitted.
User level at restart	User / Professional	Defines the user level that is enabled when the sensor starts the next time. MICRO-EPSILON Eltrotec GmbH recommends to select Professional level.

Enter your old password and the new password, including 1 x repeat and confirm with Submit.

When an professional restores the factory settings (Preferences menu > Ex-

1 tras > Factory Settings), the Professional level password is reset to 000.

Fields with a gray background require a selection.

7.2 Measurement Program Segments

7.2.1 Preliminary Remark

More than 100 edges can be detected, but only up to 8 segments can be defined with the optoCONTROL 2520 sensor. The limits of a segment are to be defined by the edges A and B.

The sensor calculates the two edge positions (A, B) from the video signal for each segment, the difference (D) between two edges (A, B) and the position of the center axis (M).

SMR = Start of measuring range EMR = End of measuring

range

- A = position edge A
- B = position edge B
- D = difference edge A/B
- M = center axis edge A/B

Fig. 45 Examples for segments

➡ Go to the Preferences > Measurement program.

When selecting the measurement program Segments an additional menu item / link to another web page Definition segments will appear.

7.2.2 Definition of Segments

Home Preferences	Measurement Video signal Help / Info optoCONTROL 2520
Login	Preferences > Measurement program > Definition Segments
Measuring distance	Definition Segments
Measurement program	Edge A Edge B
Definition Segments	Segment 1: 1 — 2
Averaging / error handling / spike correction / statistics	Segment 2: 3 - 12
Zeroing / mastering	Segment 3: 0 — 0
Digital interfaces	Segment 4: 0 — 0
Switching outputs	Segment 5: 0 — 0
Analog output	
Output data rate	Segment 6: 10 — 10
Trigger mode	Segment 7: 0 — 0
Synchronization	Segment 8: 0 — 0
Save / load setup	Submit

Fig. 46 Web page Definition segments

Select the appropriate segments and edges and confirm with Submit.

- Edge 0 is the start of measuring range.
- L Edge 1 is the edge, which the sensor finds as first in the selected searching direction,

segments with A = 0 and B = 0 are ignored.

For the selection of the edges and segments, the display of video signal can be helpful in a separate window, see 6.3.2.

To display the measurement values for the different segments, go to Measurement > Data selection Diagram, see Fig. 32.

Measured Specify the type of averaging. No averaging N defines how many sequenvalue aver-Value 2 / 4 / 8 ... 128 Moving for N values tial measurements the sensor aging will use for averaging, before Recursive for N values 2 ... 32768 Value issuing the next reading Median for N values Value 3/5/7/9 Error han-Sensor displays an error Error output, no measurement value dling number. If no valid reading can be ob-Hold last value 0 ... 1024 Value tained, the last valid value can be hold for a certain period of time, and will be issued repeatedly. If the reading is 0, the last valid value is hold permanently. Keep last value infinitely The last valid value is output infinite. Spike cor-No rection Yes Evaluation Value This filter removes individual very high spikes from a length relatively constant course of measurement value. 1 ... 10 Smaller spikes are preserved. Max. toler-Value ance range (mm) 0 ... 46 or 0 ... 95 Number of Value corrected values 1 ... 100 Statistics 2 | 4 | 8 | 16 ... 8192 | all measured values The statistical values Minimum, Maximum and Peakto-Peak are calculated and output from a predefined number of measuring values. Reading for Segment n edge A The measuring value for the statistics calculation is sestatistics Segment n edge B lectable and will if not already calculation done, added to the output via Segment n difference Ethernet automatically. Segment n center axis

Averaging / Error Handling / Spike Correction / Statistics

7.3.1 Notes on Averaging

7.3

The measuring value averaging reduces the noise or suppresses spikes. The calculated measuring values are averaged at the end of processing. The measuring rate remains unchanged.

7.3.2 Processing Sequence

- 1. Determination of the edges
- 2. Calculation of differences (diameter, gap, segment) and middle axes
- 3. Troubleshooting when there is no valid measuring value
- 4. Spike correction of the measuring values
- 5. Measuring value averaging

6. Statistics

Fields with dark border require entry of a value.

Fields with a gray background require a selection.

7.3.3 Measuring Value Averaging

Measuring value averaging is performed after measurement values have been calculated, and before they are issued or processed through the relevant interfaces.

Measuring value averaging

- improves the resolution,
- allows masking individual interference points or
- "smooths" the reading.

 $\stackrel{\bullet}{l}$ Linearity is not affected by averaging. Averaging has no effect on measuring rate and output rate.

The internal average value is re-calculated for each measuring cycle.

 $\overset{\bullet}{l}$ The defined type of average value and the number of values must be saved in the controller to ensure they are hold after it is switched off.

The optoCONTROL 2520 is delivered without measuring value averaging.

Moving average

The definable number *N* for successive measurements (window width) is used to calculate the arithmetic average M_{mov} according to the following formula:

$$M_{\rm mov} = \frac{\sum_{k=1}^{N} MV(k)}{N}$$

MV = Measuring value, N = Averaging number, k = Continuous index (in the window) M_{mov} = Averaging value respectively output value

Each new measured value is added, and the first (oldest) value is removed from the averaging (from the window). This produces short response times for measurement jumps.

Example:
$$N = 4$$

.. 0, 1, 2, 2, 1, 3

$$\downarrow$$
 ... 1, 2, 2, 1, 3, 4
 $\frac{2, 2, 1, 3}{4} = M_{mov}(n)$... 1, 2, 2, 1, 3, 4
 \downarrow ... 1, 2, 2, 3, 4
 \downarrow ... 1, 3, 4
 \downarrow ... 1, 2, 3, 4
 \downarrow ... 1, 3, 4

Moving average in the sensor allows only potentials of 2 for *N*. The highest averaging number is 128.

Fig. 47 Moving average, N = 8

Application tips

- Smooths measured values
- The effect can be finely controlled in comparison with the recursive averaging
- With uniform noise of the measured values without spikes
- At a slightly rough surface, in which the roughness should be eliminated
- Also suitable for measured value jumps at relatively low settling time

Recursive average

Formula:

$$MV = \text{Measuring value,}$$

$$M_{\text{rec}}(n) = \frac{MV_{(n)} + (N-1) \times M_{\text{rec}(n-1)}}{N} \qquad N = \text{Averaging number, } N = 1 \dots 32768$$

$$n = \text{Measurement index}$$

 $M_{\rm rec}$ = Averaging value or output value

The weighted value of each new measuring value MV(n) is added to the sum of the previous average values M_{rec} (*n*-1).

Recursive averaging allows for very strong smoothing of the measurements, however it requires long response times for measurement jumps. The recursive average value shows low-pass behavior.

_____ Signal with averaging

Fig. 48 Recursive average, N = 8

Application tips

- Permits a high degree of smoothing of the measurement values. However, it requires extremely long transient recovery times for measured value jumps (low-pass behavior)
- Permits a high degree of smoothing for noise without strong spikes
- For static measurements, to smooth signal noise
- For dynamic measurements on rough surfaces, to eliminate the roughness, e.g. roughness of paper
- For the elimination of structures, e. g. parts with uniform grooves, knurled rotary parts or roughly milled parts
- Unsuitable for highly dynamic measurements

Median

A median value is formed from a preselected number of measurements.

When creating a median value for sensor, incoming readings are sorted after each measurement. Then, the average value is provided as the median value.

3, 5, 7 or 9 readings are taken into account. This means that individual interference pulses can be suppressed. However, smoothing of the measurement curves is not very strong.

Example: Median value from five readings

01 <u>24513</u> ⇒	 Sorted measuring values: 1 	2345	$Median_{(n)} = 3$
12 <u>45135</u> ⇒	Sorted measuring values: 1	3455	Median _{$(n+1) = 4$}

Fig. 49 Median, N = 7

Fig. 51 Profile with Median, N = 9

Fig. 50 Original profile

Error Handling (Hold Last Value) 7.3.4

If no valid reading can be obtained, an error is issued. Should this be a problem for processing, the last valid value can be hold for a certain period of time, and will be issued repeatedly.

Application tips

nate spikes

influence)

median filter

- The measurement value curve is not

- In short, strong signal peaks (spikes)

smoothed to a great extent, used to elimi-

- Suppresses individual interference pulses

- Also suitable for edge jumps (only minor

- For rough, dusty or dirty environment, to

- Further averaging can be used after the

eliminate dirt or roughness

Between 1 and 1024 values can be hold.

When Keep last value infinitely, the last value is hold until a new, valid reading is obtained.

7.3.5 Spike Correction

This special form of filtering is used to remove very high spikes from a relatively constant course of measurement values, though while retaining any smaller spikes. A median would remove all the spikes.

The assessment of whether a measurement is a spike (outlier) is based on the mean of a particular number of previous valid readings. The permissible deviation from the next value is calculated using the tolerance range. If the new measured value deviates too much, it will be corrected to the previous value. A maximum number of consecutive measured values to be corrected must also be stated.

Attention: In the event of several consecutive spikes (outliers), the previous corrected value is used in the correction of the following measured value. Use this function only in appropriate applications. Improper use can lead to a distortion of the measured value sequence! Check the possible impact of a changed measured value sequence on the measuring environment and subsequent controllers/systems.

This function acts the same way on all output distances; the differences (thicknesses) are calculated on the basis of the corrected distances.

- x Evaluation length. Number of previous measured values to be assessed (max. 10).
- y Max. tolerance range (mm); the spike (outlier) correction comes into play when the value is not met or is exceeded
- z Number of corrected values (maximal 100)

Example: x = 3 / y = 0.05 / z = 1

Fig. 52 Correction of measuring values

Application tips

- Eliminating spikes with an adjustable threshold
- For highly dynamic data acquisition of fast moving objects
- With measurement jumps suitable, especially those with interfering peaks
- With edge jumps and with some bent edge transitions
- Execution is done before other averages take place

7.3.6 Statistics

The sensor derives the following statistical values from the measurement result:

Fig. 53 Evaluation cycle of statistical values

Statistical values are calculated from measurements within an evaluation cycle. The number of measurements used for calculation can be between 2 and 8192 (potential of 2), or include all measurements.

Use the Statistics reset button or the RESET STATISTICS command to start a new evaluation cycle (storage period).

Mastering or reset mastering via the switching input, see 7.4.3, also resets the statistical values.

When a new cycle starts, previous statistical values are deleted.

Statistical values are displayed in the web interface (Measurement section) or issued via the interfaces.

7.4 Zeroing / Mastering

7.4.1 General

Use zeroing and setting masters to define a target value within the measuring range. This shifts the output range. This feature can be useful, for example, for a diameter determination. Here can be mastered to a nominal value of a test pin or a zero setting of a paper edge in its desired position.

Mastering (setting masters) is used to compensate for mechanical tolerances in the sensor measurement setup or to correct chronological (thermal) changes to the sensor. The master value, also called calibration value, is defined as the target value.

The master value is the reading that is issued as result of measuring a master object. Zeroing is when you set a master with 0 (zero) as the master value.

Signal zeroing/	Program edge low-high	Edge low-high	Selection at the measuring programs "Dia eter", "Gap" and "Any segments", otherw		
mastering	Program edge high-low	Edge high-low	the measuring value of the selected measur- ing program applies.		
	Program diameter/width	Diameter edge A / Diameter edge B / Diameter diff. / diame- ter center axis			
	Program gap	Gap edge A / Gap edge B / Gap diff. / gap center axis			
	Program any segments	Segment n edge A / Segment n edge B / Segment n difference / Segment n center axis			
Master value	Millimeter / Inches	Value	Specifying, for example, the diameter of a master piece. Value range: -46.0 mm +46.0 mm (-1.811 +1.811 "). -95.0 mm +95.0 mm (-3,74 +3,74")		

7.4.2 Setting Zeroing / Masters

Place target and sensor into their required positions.

Change to the Preferences > Zeroing / mastering menu.

Preferences > Zeroing / mastering	📄 Save Setup
Zeroing / mastering	
Mastering is INACTIVE . Signal zeroing / mastering:	Edge high-low
Master value [inch]:	1.000000
	Set master value

Fig. 54 Web page Zeroing / mastering

- Change the corresponding signal in the Signal zeroing / mastering field and enter the Master value.
- Click Set master value.

After setting the master, the sensor will issue new readings that relate to the master value. If you click the Reset master value button to undo the mastering process, the system reverts to the state that existed before the master was set.

Fields with a gray background require a selection.

When setting a master, the sensor characteristic is moved in parallel. Moving the characteristic reduces the relevant measuring range of a sensor (the further master value and master position are located, the greater the reduction). However, this applies only for the RS422 and the analog output.

• Mastering or zeroing requires a target object to be present in the measuring range and affects both analog and digital outputs.

Fig. 55 Moving the characteristic when mastering

7.4.3 Mastering or Zeroing via Switching Input (In)

The input In can trigger the zeroing or the mastering of the ODC 2520 by connecting to GND. The connection can be done e.g via an external switch or transistor. The connection time triggers thereby various operations, see 5.3.7.

- Time < 2 s Mastering, reset statistic values
- Time 2 s to 5 s Reset mastering, reset statistic values
- Time > 10 s Load factory setting

The function mastering or zero setting through the switching input is independent of the user level.

7.5 Digital Interfaces

7.5.1 Overview Menu Structure

Select digital inter- faces	Output in the web diagram / Ethernet measurement transfer/ RS422	Defines which interface is used for data output. No parallel data output via multiple channels.		
Select data	Difference / edge A / edge B / center axis Statistics: min / max / peak-to- peak) /	Select the relevant check boxes to choose which data are used for transmission. The data are issued one after the other in a de- fined sequence. RS422 allows transmission no more than 32 records.		
	Number: edges / pins / gaps Sensor state / Measured value counter / Time stamp	The data selection is required for the interfaces Ethernet and RS422.		
Settings Ethernet	IP settings of basic device	Static IP-address / DHCP	Values for IP address / gate- way / subnet mask. Only for static IP address	
	Ethernet measured value transfer settings	Server / Client	Values for port and IP ad- dress	
			TCP/IP / UDP/IP	
Settings RS422	Baudrate	9.6 115.2 230.4 460.8 691.2 921.6 1500 2000 2500 3000 3500 4000 kBps		
Ethernet/ EtherCAT	Operating mode after start	Ethernet / EtherCAT		

7.5.2 Select Digital Interfaces

The optoCONTROL 2520 has three digital interfaces that can be used as an alternative data output in conjunction with parameterization.

- Change to the Preferences > Digital interfaces > Select digital interfaces menu.
- Select the designated digital interface for data output and confirm with Submit.
- Web diagram: Measuring value and video data can be transmitted. Configuring the measuring device can be done via the web interface or by ASCII commands via a terminal program.
- Ethernet measuring value transmission: allows fast data transfer, but provides no real-time capabilities (packet-based data transfer). Both measurement and video data can be transferred. Use to capture measurements without any direct process control, for subsequent analysis. Parameterization is provided through the web interface or ASCII commands.
- EtherCAT: With EtherCAT, the sensor has a real-time capable bus interface for process control.
- RS422: Provides a real-time capable interface for process control.

For a configuration of the sensor via the web interface Ethernet is also required. The HyperTerminal® program has an interface for the serial communication with sensor via RS422, as well as the Telnet® program via Ethernet, see A 5.

Save setup transmits all parameters previously set in the web interface to the sensor. The parameters are then also available in EtherCAT.

It is important here that the parameter data must be loaded via Load PDO Handling from the device from the sensor into TwinCAT. The changed parameter data cannot be loaded from the EtherCAT description file. However, this is required for parameter setting in TwinCAT.

Fields with a gray background require a selection.

7.5.3 Select Data

This menu allows the selection of data to output via Ethernet or RS422. The output data are then output successively in a fixed order. You will find details about the data format and the in the ASCII description, see A 4.5.

▶ Go to the Preferences > Digital interfaces > Select data menu.

Preferences	Preferences > Digital interfaces > Select data							
Select	Select data							
	Selected measuring program: Any segments Change measurement program							
	Data		Ethe	ernet				
		Difference	Edge A	Edge B	Center axis			
	Segment 1	\checkmark						
	Segment 2							
	1. Statistics min							
	1. Statistics max							
	1. Statistics peak-to-peak							
	2. Statistics min							
	2. Statistics max							
	2. Statistics peak-to-peak							
	Number of edges							
	Number of pins							
	Number of gaps							
	Sensor state							
	Measured value counter							

Select the appropriate data and confirm with Submit.

In addition to the specific measuring values of the measurement program, the following data can be selected in the table for output:

Statistics min, max, peak-to-peak: applies to a selected measurement, see 7.3.1.						
Number of edges: All the detected low-high and high-low transitions	Gap 4 Pin 3 Edge 6					
Number of pins: All high ranges, which are limited by two edges, completely lying within the measuring range	Gap 3Edge 0Pin 2Edge 5Edge 4Edge 3Pin 1Edge 2Gap 1Edge 2					
Number of gaps: All low ranges, which are limited by two edges, completely lying within the measuring range	SMR					
Sensor Status: Error and status of the outputs						
Measurement value counter: Allows the assignment of the selected signals to the video signal						
Time stamp: Allows the temporal assignment of measuring values						
Fig. 57 Declaration to the output data						
In each measuring program, the number of detected edge	s is determined.					

The number of edges, for example, are used to monitor whether parts with multiple edged lie completely within the measuring range of optoCONTROL 2520.

By means of the count functions, the number of pins or gaps can be output. Pins are dark ranges which are limited by two edges.

In the pictured example, see Fig. 57, 8 edges, 3 pins and 4 gaps are recognized.

The selected data, see Fig. 56, are transmitted in a frame.

7.5.4 Ethernet

When using a static IP address, you need to specify values for IP address, gateway and subnet mask; this is not necessary when using DHCP.

The sensor is factory set to the static IP address 169.254.168.150.

The optoCONTROL 2520 transmits TCP/IP or UDP/IP packages with an Ethernet transfer rate of 10 Mbit/s or 100 Mbit/s. The transfer rate is selected automatically depending on the connected network or PC.

Any output values and additional information to be transmitted that are logged at one point in time are combined to form a value frame. Multiple value frames are combined as one measurement block and enclosed by an additional header. The header must be located at the start of a UDP/IP or TCP/IP packet. One current header per packet is transmitted.

When transmitting measurement data to a measurement server, following successful connection (TCP or UDP), the sensor sends each measurement to the measurement server or to the connected client. No explicit request is required.

If any changes are made to the transmitted data or the frame rate, a new header will be sent automatically. Distance and thickness values are transmitted as 32 bit signed integer with 1 nm resolution. Limiting the amount of data is possible, see Chap. 7.8.

Video signals are transmitted the same way as measurement data are sent to a measurement server via Ethernet with one exception: only one video signal per measurement cycle is transmitted in a measuring value block.

This measuring value block can vary also over different TCP/IP or UDP/IP packets depending on the size of the video signal.

You can program the optoCONTROL 2520 also with the Telnet program and the ASCII command set. This requires an existing Ethernet connection, see A 4.5.

7.5.5 RS422

The interface RS422 has a maximum baud rate of 4000 kBaud. As a factory setting, the baud rate is set to 115.2 kBaud. Use ASCII commands or the web interface to configure.

Data format: Binary. Interface parameter: 8 data bits, no parity, 1 stop bit (8N1).

The baud rate is selectable.

Transfer settings for the optoCONTROL 2520 and PC must match.

Do not forget to save your settings, before you switch off the sensor.

Via the interface RS422 18 bit per output value is transmitted. In addition, up to 32 output values are transmitted in parallel.

The maximum number of measuring values that can be transferred for a measuring point, depend on a transmission rate of the RS422 interface. As far as possible the highest available transmission rate (baud rate) should be used.

Baud rate	Max. number of measuring data		Baud rate	Max. number of measuring data	
	MR 46 ¹	MR 95 ¹		MR 95 ¹	MR 95 ¹
9600			1500000	20	25
115200	1	1	2000000	26	33
230400	3	3	2500000	33	41
460800	6	7	3000000	40	50
691200	9	11	3500000	46	58
921600	12	15	4000000	53	66

Fig. 58 Number of the transferable measuring data in dependence of the baud rate²

Example: With a baud rate of 230400 Bd only 3 measuring data belonging to each other, e.g. the diameter, the center axis and the measuring value counter can be transferred with 2.5 kHz.

1) MR = Measuring range

2) Applies for the RS422 setting 8N1 (8 data bits, N no parity, 1 stop bit), if no filter/averaging is activated.

7.5.6 EtherCAT

The sensor can communicate with an EtherCAT system via the Ethernet socket.

Advantages:

- Fast output of measured values,
- parameter setting of the sensor

Connection of the sensor to an EtherCAT environment is possible with a 2-port EtherCAT junction via an SCD2520-x digital output cable, see also Optional Accessories, see A 1.

A single ODC2520 can also be operated directly on a TwinCAT PC with an EtherCAT-compatible network card via an SCD2520-x digital output cable. However, it is not possible to connect further EtherCAT end devices in such a case, see A 1.

Documentation on EtherCAT can also be found in the appendix, see A 7. The .xml-description file of the sensor is available at https://www.micro-epsilon.de/download/software/ODC2520-EtherCAT-XML.zip.

7.5.7 Switching between Ethernet and EtherCAT

You can switch between Ethernet and EtherCAT via ASCII command, see A 4.5.1.5, web browser, see 7.5.1 or Ether-CAT object, see A 6.10.

The switch becomes active only after the sensor has been restarted. Save the current settings before switching to EtherCAT.

The RS422 interface for sending an ASCII command is available both in Ethernet mode and in EtherCAT mode.

7.6 Switching Outputs

7.6.1 General

Assignment of the switch outputs (digital I/O)	Switch output "Error 1" Switch output "Error 2"		Measurement error / No output / Lower limit value (Gr1) / Upper limit value (Gr2) / Gr1 or Gr2 / Incorrect number of edges
Limit value	Lower limit val	ue (in mm / ")	Value
settings	Upper limit value (in mm / ")		Value
	Reading, referred to by the limits	Program edge low-high	Edge low-high
		Program edge high-low	Edge high-low
		Program diameter/width	Diameter edge A / Diameter edge B / Diameter diff. / diameter center axis
		Program gap	Gap edge A / gap edge B / gap diff. / gap center axis
		Program any segments	Segment n edge A / Segment n edge B / Segment n difference / Segment n center axis
Switch threshold of the error outputs		Switching output 1 / Switching output 2	npn / pnp / push-pull / push-pull inverted

7.6.2 Assignments of the Switch Outputs (Digital I/O)

The two switching outputs (Out 1 / 2) can be assigned different meanings:

- Measurement error: Measuring values can not be determined because no or too few edges for the selected measurement program are recognized.
- Lower limit: Switches when the specified lower limit is undercut.
- Upper limit: Switches when the specified upper limit is undercut.
- Size 1 or size 2: Switches, when undercut or exceeding of designated limit values ("not ok" = nok) exists.
- Wrong number of edges: There are less than the specified edges detected, for example, to monitor the correct positioning of the target.

The limit values are displayed in the measurement diagram, if at least a switching output is set to limit monitoring in the menu item Preferences > Switching outputs.

ttings > Switching outputs			Measurement Diameter / Width Select measure program	Diameter /	Width		
witching outputs			Mastering / Zeroing	Dia edge A :	11.095 mm	Dia edge B :	31.050 mm
			Signal zeroing / mastering:	Dia center axis:	21.072 mm		
Assignment of the switch out	tputs (digital I/O)		Master value (mm):	Statistics 1 min:	19.945 mm	Statistics 1 max:	20.021 mm
Switch output "Error 1":	Upper limit value (Gr2)	-	0.000	Statistics 2 min:	19.945 mm	Statistics 2 max:	20.021 mm
Switch output "Error 2":	Lower limit value (Gr1)	-	Set master value	Timestamp	16.4752 s		
Limit value settings Lower limit value (in mm): Upper limit value (in mm): Reading, referred to by the limits:	32.000 18.000 Dia center axis	Ţ	Averaging Measurement averaging No averaging Submit	Auto 33 31 30 29 28 27			
Switch threshold of the error	outputs			E 26			
Levels switching output 1:	push-pull	-		E 24			
Levels switching output 2:	push-pull	-					
	Submit		Data selection Diagram √ ■ Dia edge A √ ■ Dia edge B √ ■ Dia difference	21 20 W 19 17 16	<u> </u>		

Fields with a gray background require a selection.

Value Fields with dark border require entry of a value.

Fig. 59 Using the limit values for the measurement

7.6.3 Limit Value Settings

Only a selectable measuring value can be monitored. In this case, enter lower and upper limit values.

If mastering is active, the limit values refer to the mastered measuring values.

7.6.4 Switch Behavior of Error Outputs

The switch behavior (switch behavior, switch level) of the outputs Out 1/2 can be set, if an error appears or the upper limit is exceeded / the lower limit is undercut. Hardware switching outputs, see Chap. 5.3.7.

	Output active (with error, limit value exceeding)	inactive
Switch behavior	Output connects in series	
NPN (Low side)	GND	approx. V _H ¹
PNP (High side)	V ₊	approx. GND
Push-Pull	V ₊	GND
Push-Pull, negated	GND	V ₊

Take the requested settings and confirm with Submit.

1) $V_{\rm H} < 30 \, {\rm V}$

7.7 Analog Output

7.7.1 General

Be output Program measuring value edge low-high		Edge low-high		
	Program edge high-low	Edge high-low		
	Program diameter	Diameter edge A / diameter edge B /		
	width	Diameter diff. / Diameter center axis		
	Program gap	Gap edge A / Gap edge B /		
		Gap diff. / Gap center axis		
	Program	Segment n edge A / Segment n edge B		
	any segments	Segment n difference / Segm	nent n center axis	
Output range	0V 10V / inactive			
Scaling	Standard			
	Two-point	0V corresponds (in mm / ")	Value	
		10V corresponds (in mm / ")	Value	

7.7.2 Setting Analog Output

Only a measuring value can be transmitted at the analog output. This only applies for the measurement programs <code>Diameter / Width</code>, <code>Gap</code> and <code>Any</code> segments.

The resolution of the analog output is 16 bit.

Go to the Preferences > Analog output **menu**.

Home Preferences	Measurement Video signal Help/Info	optoCONTROL 2520
Login	Preferences > Analog output	Save setup
Measuring distance	Analog output	
Measurement program Averaging / error handling spike correction / statistics	Be output reading: Only one measured value can be tra	Gap difference
Zeroing / mastering	Output range:	0V 10V
Digital interfaces	Scaling:	Standard scaling
Switching outputs Analog output Output data rate	Two-point-scaling (offset and gain) 0V corresponds (in inches):	0.000
Trigger mode Synchronization	10V corresponds (in inches):	1.800 Submit

Fig. 60 Web page analog output

Output area:

- 0 V Start of measuring range
- 10 V End of measuring range
- 10.3 V Error
- **Take the desired settings and confirm with** Submit.

Fields with a gray background require a selection.

7.7.3 Two-Point Scaling

If you use only one part of the measuring range, the output area of the analog output can be also spread or be turned. The sensor calculates factor and movement itself.

 $\stackrel{\bullet}{l}$ If only the output needs to be moved, we recommend to use the <code>Zeroing / Mastering</code> .

Two-point scaling enables the user to specify separate start and end values (in millimetre) for the sensor's measuring range. The available output range of the analog output is then spread between the minimum and maximum values, see Fig. 61. This allows for decreasing analog characteristics.

EMR = End of measuring range SMR = Start of measuring range

Fig. 61 Scaling of analog signal, measurement program edge low-high

7.8 Output Data Rate

The reduction of output data rate means that only every nth measuring value is output. The other measuring values are rejected.

• A possibly desired averaging over n values must be set separately.

D Go to the Preferences	; >	Output	data	rate	menu.
-------------------------	-----	--------	------	------	-------

Measuring value	Value	Only every nth measuring value is output. n = 1: every $n = 2 \dots 150000$
Reducing	Analog / RS422	Select the relevant check boxes to choose which inter-
interfaces	/ Ethernet	faces are used for data reductions.

Select the desired reduction of output data rate and confirm with Submit.

Do not forget to save the setup before you switch off the sensor.

Fields with a gray background require a selection. 1

7.9 Trigger Mode

7.9.1 Preliminary Remarks

Value input and output on the optoCONTROL 2520 can be controlled through external electrical trigger signals or commands. Both analog and digital outputs are affected. The measured value to the trigger point is output delayed, see 7.15.

- Triggering does not affect preset measuring rates.
- The Sync input (Sync in) is used as external trigger input. Trigger source can be, for example, an encoder with RS422-level or a level converter which resets the TTL / HTL signals in RS422 level. Micro-Epsilon recommends the level converter SU4-x from LEG Industrie-Elektronik, see Chap. A 1, see Chap. 7.9.5.
- Factory settings: no triggering, the sensor starts transmitting data as soon as it is switched on.
- Pulse duration of trigger signal is 5 μ s or more.

Level triggering	Measuring value input Measuring value output	Level low / Level high	
Edge triggering	Measuring value	Starts the output of measuring data	Falling edge / Rising edge
	Measuring value output	Number of measuring value	Value [1 16383]
Software triggering	Measuring value input Measuring value output	Number of measuring value	Value [1 16383]
No triggering		continuous measuring value output	

7.9.2 Setting the Trigger Mode

➡ Go to the Preferences > Trigger mode menu.

Preferences > Trigger mode	Save setup
Trigger mode	
Selected mode:	Software triggering
Trigger input affects to:	Measuring value input
Termination of the Sync/Trig input:	\checkmark
	Submit
Setting software triggering	

Fig. 62 Web page trigger mode

The checkbox Termination of the Sync/Trig input switches the internal 120 Ohm terminating resistor at the trigger input on or off.

- Select the trigger mode and the assignment of the trigger event to measuring value input / output as well as the termination and confirm with Submit.
- Go to the appropriate subpage Preferences of the edge / level / software triggering.

Fields with a gray background require a selection.

Level triggering. Continuous value input/output as long as the selected level is active. After that the controller stops the input/output of the values. Pulse duration must last for at least one cycle. The subsequent pause must also last for at least one cycle.

Fig. 63 Active high level trigger (U), relevant analog signal (A_{o}) and digital signal (D_{o})

Edge triggering. Starts value input/output as soon as the selected edge is active to the trigger input. If trigger conditions are met, the controller outputs a defined number of measurements.

Value range:

- 1 ... 16382: Number of measuring values, to be output after a trigger pulse.
- 16383: Start an infinite measuring value output after a trigger pulse.
- 0: Stops data output.

After termination of the data output, the analog output remains at the last value (Sample & Hold).

The duration of the pulse must be at least 5 μ s.

Fig. 64 Falling edge trigger (U_1) , relevant analog signal (A_0) and digital signal (D_0)

Software triggering. Starts outputting values as soon as a software command (instead of the trigger input) or the Start triggering button is activated. The point in time is not defined as accurately. If trigger conditions are met, the sensor outputs a defined number of measuring values.

Value range:

- 1 ... 16382: Number of measuring values to be output after a trigger pulse.
- 16383: Start an infinite measuring value output after a trigger pulse.
- 0: Stops the data output.

The measuring value output can be terminated by a command, see A 4.

7.9.3 Triggering the Measuring Value Output Recording

The current array signal is only further processed after a valid trigger event and the measuring values are calculated from this. The measurement data is then transferred for further calculation (e.g. averaging or statistics), as well as the output via a digital or analog interface.

When calculating averages or statistics, measuring values immediately before the trigger event cannot be included; instead older measuring values are used, which had been entered during previous trigger events.

7.9.4 Triggering the Measuring Value Output

The calculation of the measuring values is performed continuously and independently of the trigger event. A trigger event only triggers the output of the values via a digital or analog interface. Thus values measured immediately before the trigger event are used when calculating means (averages) or statistics. The triggering of the measuring value recording and output have the same timing, see 7.15.

7.9.5 Example

The trigger inputs on the sensor expect RS422 level. The following example shows the adjustment of a 24V trigger source with the level converter SU4-1 from the optional accessories.

Fig. 65 Trigger example

7.10 Synchronization

If two or more sensors optoCONTROL 2520 measure the same target synchronously, the receiver may be synchronized with each other.

The synchronization of several sensors is used in the thickness / width measuring of larger targets.

Follow the time behavior of the sensor, see 7.15.

Synchronization of more measuring systems	No synchro- nization	The sensor works autarkic and no synchro- nous signal is output via the bidirectional synchronous line.
	Master	The sensor outputs a synchronous signal via the bidirectional synchronous line. This syn- chronous signal is used for synchronization of another sensor in the "Slave" mode. Both sensors start their measurement simultane- ously.
	Slave	The sensor awaits a synchronous signal via the bidirectional synchronous line. This synchronous signal is generated by anoth- er sensor in the "Master" or a frequency generator.
Termination of the Sync/Trig input	Checkbox (on / off)	Checkbox is activated: $R_{\tau} = 120$ Ohm between input "Sync In" and "/Sync In"

Connect the supply voltage grounds of all sensors with each other.

Connect the inputs Sync IN/Out with each other.

Connect the inputs /Sync IN/Out with each other.

Connect the cable screens of all sensors with each other.

Complete the last slave in the row with the internal termination resistor (120 Ohm).

Fig. 66 Synchronization of several sensors, example optoCONTROL 2520-46

Do not forget to save the setup before you switch off the sensor.

If the sensors are operated via an EtherCAT interface, synchronization can be realized even without a synchronization line.

Take the required settings and confirm with Submit.

Value

Fields with a gray background require a selection. 1

7.11 Manage Setups on PC

Use this menu to save a backup copy of the sensor data to a PC or to restore backed up setup files to the sensor. You can also use this feature to configure an additional sensor.

• Save the sensor settings in a setup, before exporting or importing setup data.

Setup no.	1 2 3 8	You can save 8 different parameters in the sensor permanently.	
Keep interface settings:	Checkbox	Interface settings include network properties, such as the baud rate for the RS422 interface.	
		If the checkbox is enabled, the settings for language, login, analog output and digital interfaces are maintained.	

➡ Go to the Preferences > Save / load setup > Manage setups on PC menu.

Fix the setup number.

Make the selection, if you want to keep the interface settings.

Export setup data	Import setup data	
Click the Export setup button.	Click the Browse button.	
A Windows dialog box for saving a file opens. In the Windows dialog box, the file	A Windows dialog box for selecting the file opens.	
<pre>name Setup_ODC2520_On.meo (n = setup-no.) proposed.</pre>	Select the setup-file to be imported in the Windows selection dialog	
Change the file name of the setup file (*.meo) and the folder, if necessary and click the Save button.	(Open). The selected setup file is registered in the Select setup file selection dialog.	
Any currently selected setup files will be	Click the Import setup button.	
backed up to the PC.	This will import the selected configuration from the selected setup file and activates them. The imported configuration is not automatically saved in the sensor.	

Do not forget to save the setup before you switch off the sensor.

Fields with a gray background require a selection. 1

7.12 **Extras**

7.12.1 **Set Factory Settings**

▶ Go to the Preferences > Extras > Factory settings menu.

Preferences > Extras > Factory settings	Save Setup
Factory settings	
Reset current setup only Maintain interface settin	:
Overwrite all setups.	Reset
Reset current setup only If the checkbox is activated, b maintained. The factory settin If the checkbox is not activated current setup after the "Save Maintain interface setting	Reset" only the currently used setup is overwritten with the factory settings. All setups are are not saved in the currently used setup until you press the "Save Setup" button. y "Reset" all settings of setup 1 to 8 deleted in the sensor. The factory settings are only stored in up" button is pressed.

Fig. 67 Web page

- Only reset current setup
 - If the checkbox is activated, only the currently used setup is overwritten by the factory settings Reset. The other setups remain.
 - If the checkbox is not activated, all settings of the setups 1 ... 8 are deleted in the sensor by Reset.
- Maintain interface settings
 - If the checkbox is activated, the settings for language, password, analog output and network will kept.
- ► Make the selection whether you want to reset the current setup and / or to maintain the interface settings and then press the Reset button.
- Factory setting is not saved in the currently used setup until you press the Save 1
- setup button.

Resetting the sensor to the factory settings is also possible via the digital Switching input IN, see Chap. 5.3.7. To do this, connect the input for more than 10 seconds to the supply ground in the professional user level.

7.12.2 Reset the Sensor

■ Go to the Preferences > Extras > Reset of sensor menu.

The Reset button releases a new start of the sensor.

The measurement is stopped, any unsaved changes will be lost. 1

Reset corresponds to the switching off and on of the sensor (Power on).

7.12.3 Select Measuring Unit

➡ Go to the Preferences > Extras > Measuring unit menu.

Preferences > Extras > Measuring unit		🕞 Save Setup
Measuring unit		
Measuring unit:	inch	•
	mm	
	inch	
The selected measuring unit applie	as this web-based user interface only,	other outputs and the ASCII-commands are not
related.		
Landatalandarah		

Fig. 68 Web page units

Changes the measurement display on the web pages. The command has no effect on other outputs.

7.13 Masking Evaluation Range

The masking limits the range for the evaluation in the video signal, for example if shadowings of the video signal are available by devices.

- **Company the web page** Video signal in the top navigation bar.
- **Go to the menu item** Masking.

Fig. 69 Web page Masked evaluation range

• The measuring range can be reduced by the masking.

Ex works the mark is set to 0 % (beginning) and 100 % (end).

Choose beginning and end of the masked area and confirm with Submit.

The new masking is visible in the diagram and in the setup of the sensor.

Save the settings in the sensor in a setup before you switch off the sensor, see Chap. 6.6.2.
7.14 Help / Info

This page contains information such as the sensors serial and version numbers, saved calibration tables and an address block.

The ${\tt Save diagnostic file}\xspace{1.5}$

7.15 Timing, Measuring Value Flux

The device operates in cycles for measuring and processing:

- 1. Exposure: Charging the incoming light in the receiver,
- 2. Conversion of the video signal as digital values and calculation of the edges,
- 3. Calculation of diameter, gap and segments, averaging,
- 4. Measuring value output.

The measured value N is available after three cycles on the output.

The processing of the cycles occurs sequentially in time and parallel in space (pipelining). After another cycle the next measurement value (N + 1) is output.

Each cycle takes about 0.4 ms at a measuring rate of 2.5 kHz (46 mm) and 2.0 kHz (95 mm). The delay time between the input reaction and output signal is therefore about 1.6 ms for this measuring rate.

Cycle	1. (N)	2. (N+1)	3. (N+2)	4. (N+3)
Time	0.4 ms	0.8 ms	1.2 ms	1.6 ms
1. Layer	Exposure N	Computing N	Computing N	Output N
2. Layer		Exposure N+1	Computing N+1	Computing N+1
3. Layer			Exposure N+2	Computing N+2
4. Layer				Exposure N+3

Fig. 70 optoCONTROL 2520 timing after switching on

The measuring value output is available 3 cycles after the incoming trigger signal with active triggering.

Fig. 71 Timing with triggering, rising edge, one measuring value output

Fig. 72 Timing with synchronization, steady state

8. Errors, Repair

8.1 Communication

- If an error page is displayed in the web browser, please check the following:
- Check if the sensor is connected correctly, see Chap. 5.3.
- Check the IP configuration of PC and sensor, find the sensor with sensorTOOL program, see 6.2.1, see Fig. 30.

The sensorTOOL program is available online at https://www.microepsilon.com/fileadmin/download/software/sensorTool.exe.

If sensor and PC are connected directly, IP address detection may take up to 2 minutes.

- Check the proxy settings. If the sensor uses a separate network adapter to connect to the PC, you need to disable the use of a proxy server for this connection. Contact your network specialist or administrator!

8.2 Optical Influences

8.2.1 Pollutions

All targets in the beam path cast a shadow. The parallel laser light leads in particular to diffraction and interference. Avoid flying dust in the measuring channel between receiver and light source and dust deposits on the windows. Prefer, if possible, the horizontal measurement arrangement.

In dusty environments, the receiver and the laser are constantly blowing off with cleaned (dust and oil-free) compressed air via a standard nozzle.

- Use a clean, soft, lint-free cloth or lens cleaning paper and pure alcohol (isopropa-
- $\mathbf l$ nol). Do not use commercial glass cleaner or other cleansing agents.

8.2.2 Ambient Light

A filter in the receiver provides for a maximum foreign light suppression of ambient light of 20,000 lux out of range (indirect exposure) and 1,000 lux with direct irradiation of fluorescent lamps into the receiver.

Avoid a direct irradiation of directed light sources on the receiver, as for example, reflector lamps or sunlight.

Provide here by suitable measures (weakly black shielding walls, housings etc.) that possibly no ambient light seems directly into the receiver. This applies also for varying light reflections and backgrounds (window, lamps, people or similar).

• Avoid direct irradiation of ambient light into the receiver range.

Fig. 73 Ambient light photosensitive ranges in input range

8.2.3 Shadowing of the Laser Light

In free space no fading (shadowing) of the laser light may occur.

Fig. 75 Free space for the light band between light source and receiver, example opto-CONTROL 2520-95

Dimensions in mm (inches)

Fig. 76 Free space for the light band between light source and receiver, example opto-CONTROL 2520-95(270)

If targets (edges) rise in the light band, which are not used in the measuring process, these must be taken into account (hidden) during measurement program editing. To do this, use the masked evaluation range in the video signal, see 7.13, or the measurement program Any segments, see 7.2. There you are free to choose between which edges is to be measured.

8.2.4 Temperature Differences

In the area of the laser light, the air should only have uniform temperature. Bigger heat sources can cause that a temperature profile in the air forms with different refractive indices, which deflects the parallel laser light as a lens and can lead to large measurement errors.

8.2.5 Edge Jumps

The photosensitive area of the receiver is only 64 μ m high. Should a continuous course (e.g. cable diameter or cone) be gauged, this is realizable with a theoretical lateral resolution of 64 μ m.

However, special rules apply for edge jumps and grooves, since the laser light band is influenced by diffraction effects.

Fig. 77 Limitations with measurements at screw threads and edge transitions

If the allowable distance area is exceeded, the measurement uncertainty increases.

8.2.6 Thin Targets

If the diameter of very thin wires (<0.5 mm) should be measured, this is not possible on grounds of the bending and interferences in the laser light with this sensor. However, the position of the wire can be often still measured.

Working in the smallest possible distance, look at the video signal, select a suitable measurement program and threshold height.

Fig. 78 Video signal thin wire (0.2 mm)

8.2.7 Transparent Targets

Although the sensor can measure very low interferences in the beam path due to its mode of action with parallel laser light can measure, MICRO-EPSILON Eltrotec GmbH recommends to perform tests with various measurement distances with a measurement of transparent materials (e.g. edges of clear films and slices or transparent round materials, glass pipes).

To assess the measurability of transparent targets, the video signal is also suitable, see Chap. 6.3.2

Transparent targets do not completely overshadow the laser light. Here merely the edge of a glass plate causes a small shadowing, which is sufficient for the determination of the edge position.

Fig. 79 Video signal with glass pipe as target

The glass pipe also still works as a cylindrical lens. In addition, areas are thereby lightened on the left and to the right of the target. The diameter is well measurable (mastering measuring value).

Select preferably the measurement program Diameter, see Fig. 39, since in this case the first and final edge for the measurement of outer diameter can be used.

Also watch for extreme cleanness!

Diffuse-transparent material can be measured generally well.

8.2.8 Wrong Edge Number

If should be measured, for example, in the measurement program Gap, at least one high-low and a low-high edge must be in the measuring range, otherwise a measuring value error is output.

Example: Measurement program Any segments, the measurement is between edge 5 and 6. The target has at least 6 edges.

9. Software Update

9.1 Procedure

A software update (firmware) is performed via an Ethernet connection.

- Connect the receiver ("Ethernet" female connector) to a PC using an Ethernet direct connection (LAN). Use an optional available cable SCD2520-3.
- $\stackrel{\bullet}{l}$ A software update does not affect the parameter settings. Newly added parameters are set to default settings.

You will find the latest firmware update tool UpdateSensor.exe on our web page: https://www.microepsilon.com/fileadmin/download/software/ODC2520-firmware-update. zip.

Obtain the firmware at the appropriate sales representatives in our house.

9.2 Troubleshooting

If a running software update is interrupted, the originally existing software version (factory image) can be restored. To do this, set the sensor to the factory settings via the 4-pin. Ethernet / EtherCAT connector.

If a software update is interrupted and the sensor is unable to boot, the sensor can temporarily be started with the originally present software (factory image). Then repeat the software update.

Start (boot) the sensor with short-circuited 4-pin. Ethernet / EtherCAT connector.

This function is only available starting from SN15xxxxx. If you have a device with the SN13xxxxx or 14xxxxx, which will not be able to reboot please send it back to us for checking, see Chap.

This process does not replace permanently the current software version, but includes a permanent reset to the factory settings. Use this feature with care.

Required hardware

- Ethernet / EtherCAT connector, see Fig. 80

Fig. 80 Ethernet/EtherCAT connector

- Connector with jumpers

Procedure

- Switch off the sensors power supply.
- Connect the pins Tx+(1) with Rx+ (2) and Tx- (3) with Rx- (4), see figure.

4-pin built-in socket, view of connector side or

4-pin cable plug, view of solder side

- Switch on the sensors power supply.
- Wait until the end of the boot process in the sensor.

Booting finished:

- LED Speed flashes yellow
- LED Link/activity flashes green

Remove the jumpers on the 4-pole connector.

10. Software Support with MEDAQLib

A documented driver DLL is available to you with MEDAQLib, in order to contain the sensor in an existing or customized PC software.

- the 4-way converter IF2004/USB and connection cable PC/SC2520-x/IF2008 or
- PCI interface card IF2008/PCIE and connection cable PC/SC2520-x/IF2008 or
- Ethernet.

You need no knowledge about the sensor protocol to communicate with the individual controllers. The individual commands and parameters for the sensor to be addressed will be set with abstract functions. MEDAQLib translates the abstract function in comprehensible instructions for the sensor.

MEDAQLib

- contains a DLL, which can be imported into C, C++, VB, Delphi and many additional programs,
- makes data conversion for you,
- works independent of the used interface type,
- features by identical functions for the communication (commands),
- provides a consistent transmission format for all MICRO-EPSILON sensors.

For C/C++ programmers MEDAQLib contains an additional header file and a library file.

You will find the latest driver / program routine including documentation at: www.micro-epsilon.com/service/download/

https://www.microepsilon.com/fileadmin/download/software/MEDAQLib.zip

11. Disclaimer

All components of the device have been checked and tested for functionality in the factory. However, should any defects occur despite careful quality control, these shall be reported immediately to MICRO-EPSILON or to your distributor / retailer.

MICRO-EPSILON undertakes no liability whatsoever for damage, loss or costs caused by or related in any way to the product, in particular consequential damage, e.g., due to

- non-observance of these instructions/this manual,
- improper use or improper handling (in particular due to improper installation, commissioning, operation and maintenance) of the product,
- repairs or modifications by third parties,
- the use of force or other handling by unqualified persons.

This limitation of liability also applies to defects resulting from normal wear and tear (e.g., to wearing parts) and in the event of non-compliance with the specified maintenance intervals (if applicable).

MICRO-EPSILON is exclusively responsible for repairs.

It is not permitted to make unauthorized structural and / or technical modifications or alterations to the product.

In the interest of further development, MICRO-EPSILON reserves the right to modify the design.

In addition, the General Terms of Business of MICRO-EPSILON shall apply, which can be accessed under Legal details | Micro-Epsilon https://www.micro-epsilon.com/impressum/.

12. Service, Repair

If the receiver or light source is defective:

- If possible, save the current sensor settings in a parameter set, see 7.11, to reload them the settings back into the sensor after the repair.
- Please send us the affected parts for repair or exchange.
- Describe the error as precisely as possible. Please always send both components (light source and receiver) for repair or calibration.

If the cause of a fault cannot be clearly identified, please send the entire measuring system to: MICRO-EPSILON Eltrotec GmbH Manfred-Wörner-Straße 101 73037 Göppingen / Germany

Tel. +49 (0) 7161 / 98872-300 Fax +49 (0) 7161 / 98872-303 eltrotec@micro-epsilon.com www.micro-epsilon.com

13. Decommissioning, Disposal

In order to avoid the release of environmentally harmful substances and to ensure the reuse of valuable raw materials, we draw your attention to the following regulations and obligations:

- Remove all cables from the sensor and/or controller.
- Dispose of the sensor and/or the controller, its components and accessories, as well as the packaging materials in compliance with the applicable country-specific waste treatment and disposal regulations of the region of use.
- You are obliged to comply with all relevant national laws and regulations.

For Germany / the EU, the following (disposal) instructions apply in particular:

- Waste equipment marked with a crossed garbage can must not be disposed of with normal industrial waste (e.g. residual waste can or the yellow recycling bin) and must be disposed of separately. This avoids hazards to the environment due to incorrect disposal and ensures proper recycling of the old appliances.

- A list of national laws and contacts in the EU member states can be found at https://ec.europa.eu/environment/topics/waste-and-recycling/waste-electrical-and-electronic-equipment-weee_en.
 Here you can inform yourself about the respective national collection and return points.
- Old devices can also be returned for disposal to MICRO-EPSILON at the address given in the imprint at https://www.micro-epsilon.com/impressum/.
- We would like to point out that you are responsible for deleting the measurement-specific and personal data on the old devices to be disposed of.
- Under the registration number WEEE-Reg.-Nr. DE28605721, we are registered at the foundation Elektro-Altgeräte Register, Nordostpark 72, 90411 Nuremberg, as a manufacturer of electrical and/or electronic equipment.

Appendix

A 1 Optional Accessories

1) Min. bending radius permanently flexible min. 7.5 x cable outside diameter

IF2001/USB	IF2001/USB single channel RS422/ USB converter
IF2004/USB	4-way converter from RS422 to USB suitable for cable PC/SC2520-3/ IF2008, including drivers, connections: 2×Sub-D, 1×terminal block
IC2001/USB	IC2001/USB Single Channel RS422/ USB Converter Cable
IF2035/PNET IF2035/ENETIP	Interface module for PROFINET or EtherNet/IP connection of a Mi- cro-Epsilon sensor with RS485 or RS422 interface, suitable for PC/ SC2520-x cables, top-hat rail hous- ing, incl. GSDML file for software integration in the PLC
PS2020	Power supply for DIN rail mounting, input 230 VAC, output 24 VDC/2.5 A
PS2031	PS2031 Power supply unit universal 100-240V/24V/ 1A; 2m-PVC; termi- nal-2P-BU-ge; with additional UK and USA plug
IF2008/PCIE	Interface card IF2008/PCIE for the synchronous detection of 4 digital sensor signals series optoCONTROL 2520 or others and 2 encoder. In connection with IF2008E, a total of 6 digital signals, 2 encoder, 2 analog signals and 8 I/O signals can record- ed synchronously.
IF2008-Y-adapter cable	For the connection of two interface cables PC/SC2520-3/IF2008

1) Not included in set, but required: CE2520-x connecting cable and SCD2520-x cable. They can be ordered as separate accessories.

A 2 Factory Setting

A 2.1 Parameter

Parameter	Factory setting
Language	German
User group (reboot)	Professional
Pass word (professional)	000
Measurement program	Edge low-high
Search direction of the edges	Standard (from rail)
Measuring direction of the edges	Standard (from rail)
Measuring value averaging	No averaging
Troubleshooting no valid measuring value	Troubleshooting, no measuring
	value
Use spike correction	No
Statistics number of measuring values for calcu- lation	All measuring values
Measuring value for the 1 st statistics calculation	Edge low-high
Measuring value for the 2 nd statistics calculation	Edge low-high
Mastering	Inactive
Signal Zeroing / Mastering	Edge low-high
Master value in Millimeter / Inches	0.000
Laser	ON
Used interface for the data output	Web diagram
Ethernet address type	static IP address
IP address	169.254.168.150
Gateway	169.254.1.1
Subnet mask	255 255 255 0
Ethernet transmission type	Server TCP/IP
Port number	1024
BS422 Baud rate	115.2 kBns
Parameter of the RS422 interface (fixed)	8 data bits, no parity, 1 stop bit (8N1)
Operating mode after system start	Ethernet
Assignment switching output "Error 1"	Measuring value error
Assignment switching output "Error 2"	No output
Lower limit (in mm / inches)	0.000
Upper limit (in mm / inches)	46.000 mm / 1.811 "
	95.000 mm / 3.740 "
Measuring value, to which the limits refer	Edge low-high
Levels switching output 1	Push pull
Levels switching output 2	Push pull
Hold switching output 1 ¹	No
Hold switching output 2 ¹	No
Analog output - be output measurement	Edge low-high
Analog output - output area	0 V 10 V
Analog output - scaling	Standard scaling
Output data rate	Each measuring value is output
Reduction applies for the following interfaces	Analog, RS422, Ethernet
Trigger mode	No triggering
Termination of the sync / trig input	Yes (120 Ohm)
Synchronization mode	No synchronization
Setup no.	1
Maintained interface settings	No
Detection threshold (in %)	12.50
Masking beginning (in %)	0
Masking end (in %)	100

1) With manual activation of the switching outputs, the default value for the hold time is 10 ms.

A 2.2 Set Default Settings

Resetting the sensor to the factory settings is possible via:

- Web interface (browser): Preferences > Extras > Factory settings menu, see Chap. 7.11.1.
- ASCII command (RS422, Ethernet): SETDEFAULT , see Chap. A 4.5.6.3
- EtherCAT(TwinCAT o. a.): Object 2105 Factory settings, see A 6.3.3.7.
- Hardware: Digital Switching input IN

The hardware factory setting via the digital input IN is carried out as follows:

Required hardware

- 14-pin supply and output connector, see Fig. 81

Fig. 81 Supply and output connector

- Supply and output cable PC/SC2520-x

Procedure

- Connect the sensor to a power supply, use therefore the cable e.g. PC/SC2520-x.
- Switch on the sensor power supply.
- Connect the input In (pin T resp. the gray/pink wire) for more than 10 seconds to the supply ground, see Fig. 28.

The LED power switches shortly from green to yellow.

Remove the connection on the input IN.

The process is completed when the LED power flashes green again. The sensor does not boot again.

A 3 RS422, Connection to RS422 Converter

Fig. 82 USB connection to PC, example optoCONTROL 2520-46

ODC2520			IF2001/USB
Signal	Color PC/SC2520-3	PIN 14-pin female cable connector	Signal
RX+	Brown	М	TxD+
RX-	Green	A	TxD-
TX+	Gray	С	RxD+
TX-	Yellow	N	RxD-
GND - RS422	Violet	J	Ground

Fig. 83 RS422 connection ODC 2520 with IF2001/USB converter

- For the connection between an optoCONTROL 2520 sensor and the peripheral
- I IF2001/USB the lines must be crossed, i.e. the transmitter lines (Tx) must be connected to the corresponding receiver lines (Rx).

A 3.2 IF2004/USB 4-Channel RS422/USB Converter

The IF2004/USB converter can be used to operate 4 optoCONTROL 2520 sensors on a USB port via RS422, see A 1.

The 4 COM ports can be switched one after another.

Please refer to the operating instructions and the assembly instruction IF2004/USB 4-channel RS422/USB converter for more details. You will find them on our MICRO-EPSI-LON homepage

https://www.micro-epsilon.com/download/manuals/man--IF2004-USB--en.pdf.

https://www.micro-epsilon.com/download/manuals/ass--IF2004-USB--en.pdf.

For connection, please use, e.g., the PC/SC2520-3/IF2008 cable, see A 1.

A 3.3 IC2001/USB Single-Channel RS422/USB Converter Cable

To use an optoCONTROL 2520 via RS422 on a USB port, the IC2001/USB single-channel RS422/USB converter cable can also be used, see A 1.

i

Baud rates of 9,6 up to 1000 kBaud are supported.

A 4 ASCII Communication

A 4.1 General

The ASCII commands can be sent to the controller via the RS422 interface or Ethernet (Port 23). All commands, inputs and error messages are in English. A command always consists of the command name and zero or more parameters, which are separated by spaces and are completed with LF. If spaces are used in parameters, the parameters must be placed in quotation marks (e.g. "password with spaces").

Example: Switch on the output via RS422

OUTPUT RS422 🖵

Advice: I must include LF, but may also be CR LF.

Declaration: LF Line feed (line feed, hex 0A)

CR Carriage return (carriage return, hex 0D)

Lefter (depending on the system hex 0A or hex 0D0A)

The currently set parameter value is returned if a command is activated without parameters.

The output format is:

<Command name> <Parameter1> [<Parameter2> [...]]

The reply can be used again as command for the parameter setting without changes. In this case, optional parameters are returned only where necessary. For example, $OUT-ADD_ETH$, will return enabled output values only.

After processing a command, the system always returns a line break and a command prompt. In the event of an error, an error message starting with "Exx" will appear before the prompt, where xx represents a unique error number. In addition, the system may display a warning ("Wxx") instead of an error message. Warnings are structured like error messages. Warnings do not prevent commands from being executed.

Group	Chapter	Command	Short info
Genera		,	
	Chap. A 4.3.1.1	HELP	Help
	Chap. A 4.3.1.2	GETINFO	Sensor Information
	Chap. A 4.3.1.3	ECHO ON/OFF	Reply type
	Chap. A 4.3.1.4	PRINT	Overview parameters
	Chap. A 4.3.1.5	SYNC	Synchronization
	Chap. A 4.3.1.6	RESET	Booting the sensor
User lev	/el		
	Chap. A 4.3.2.1	LOGIN	Change of the user level
	Chap. A 4.3.2.2	LOGOUT	Change to user level "Operator"
	Chap. A 4.3.2.3	GETUSERLEVEL	Request user level
	Chap. A 4.3.2.4	STDUSER	Set user level
	Chap. A 4.3.2.5	PASSWD	Change password
Video s	Video signal		
	Chap. A 4.3.3.1	LIGHTCORR	Light source reference
	Chap. A 4.3.3.2	THRESHOLD	Edge detection threshold
	Chap. A 4.3.3.3	ROI	Reduce region of interest

A 4.2 Commands Overview

Measurement				
Chap. A 4.4.1.1	MEASDIST	Calibration selection for a measuring distance		
Chap. A 4.4.1.2	MEASDISTINFO	Current calibration for a measuring distance		
Chap. A 4.4.1.3	MEASDISTTABLE	Table of all calibrated measuring distances		
Chap. A 4.4.2.1	MEASMODE	Measurement program selection		
Chap. A 4.4.2.2	SEARCHDIR	Search direction edges		
Chap. A 4.4.2.3	MEASDIR	Measuring direction edges		
Chap. A 4.4.2.4	EXPEDGES	Expected number of edges		
Chap. A 4.4.2.5	DEFSEG1 DEFSEG2 DEFSEG3 DEFSEG4 DEFSEG5 DEFSEG6 DEFSEG7 DEFSEG8	Definition of segments		
Chap. A 4.4.2.6		Signal names		
Measuring value process	sing			
Chap. A 4.4.3.1	AVERAGE	Measuring value averaging		
Chap. A 4.4.3.2	SPIKECORR	Spike correction		
Chap. A 4.4.3.3	OUTHOLD	Troubleshooting		
Chap. A 4.4.3.4	STATISTICSIGNAL	Selection of the measuring value of 1. statistics		
Chap. A 4.4.3.5	STATISTIC2SIGNAL	Selection of the measuring value of 2. statistics		
Chap. A 4.4.3.6	STATISTICDEPTH	Setting the statistics calculation		
Chap. A 4.4.3.7	RESETSTATISTIC	Resetting the statistics calculation		
Chap. A 4.4.3.8	MASTERSIGNAL	Selection of measuring value for mastering / zeroing		
Chap. A 4.4.3.9	MASTERMV	Mastering / zeroing		
Data output				
Chap. A 4.5.1.1	OUTPUT	Selection of digital output		
Chap. A 4.5.1.2	IPCONFIG	Ethernet IP settings		
Chap. A 4.5.1.3	OUTHOLD	Setting for Ethernet transmission of measuring value		
Chap. A 4.5.1.4	BAUDRATE	Setting the RS422 baud rate		
Chap. A 4.5.1.5	ETHERMODE ETH- ERNET/ETHERCAT	Switching Ethernet / EtherCAT		
Chap. A 4.5.1.6	OUTREDUCE	Reducing the output data rate		

Selection of measuring	alues to be output		
Chap. A 4.5.2.2	OUTEDGEHL_RS422 OUTEDGEHL_ETH	Output of measuring values Edge low-high	
Chap. A 4.5.2.3	OUTEDGELH_RS422 OUTEDGELH_ETH	Output of measuring values Edge low-high	
Chap. A 4.5.2.4	OUTDIA_RS422 OUTDIA_ETH	Output of diameter data	
Chap. A 4.5.2.5	OUTGAP_RS422 OUTGAP_ETH	Output of gap data	
Chap. A 4.5.2.6	OUTSEG_RS422 OUTSEG_ETH	Output of segment data	
Chap. A 4.5.2.7	OUTADD_RS422 OUTADD_ETH	Output of additional data	
Chap. A 4.5.2.8	OUTSTATISTIC_ RS422 OUTSTATISTIC_ETH	Output of statistics data	
Chap. A 4.5.2.9	OUTVID ETH	Output of video signals	
Switching outputs			
Chap. A 4.5.3.1	ERROROUT1 ERROROUT2	Assignment of the switch outputs	
Chap. A 4.5.3.2	ERROROUTHOLD	Hold period of switching outputs	
Chap. A 4.5.3.3	ERRORLIMIT	Set the limit values	
Chap. A 4.5.3.4	ERRORLEVELOUT1	Active level of switching output 1	
	ERRORLEVELOUT2	Active level of switching output 2	
Analog output		'	
Chap. A 4.5.4.1	ANALOGOUT	Data selection for analog output	
Chap. A 4.5.4.2	ANALOGRANGE	Disable/enable the analog output	
Chap. A 4.5.4.3	ANALOGSCALE STANDRD	Scaling the analog output	
Triggering			
Chap. A 4.5.5.2	TRIGGER	Trigger type	
Chap. A 4.5.5.3	TRIGGERAT	Effect of the trigger input	
Chap. A 4.5.5.4	TRIGGERLEVEL	Trigger level	
Chap. A 4.5.5.5	TRIGGERCOUNT	Number of output values	
Chap. A 4.5.5.6	TRIGGERSW	Software trigger pulse	
Parameter management, load / save settings			
Chap. A 4.5.6.1	STORE	Save parameter set	
Chap. A 4.5.6.2	READ	Load parameter set	
Chap. A 4.5.6.3	SETDEFAULT	Resetting to factory settings	
Chap. A 4.5.6.4	Unit	Changes measurement unit	
Measuring Date format			
Chap. A 4.5.8.5	OUTVID_ETH NONE	Ethernet Video Signal Transmission	
Unap. A 4.5.8.6	Laser UFF/UFF	Laseriichtquelle schalten	

A 4.3 General Commands

A 4.3.1 General

A 4.3.1.1 Help

```
HELP [<command>]
```

Help is displayed for a command. If no command is specified, general help information is displayed.

A 4.3.1.2 Sensor Information

Sensor data are queried. Output as per example below:

->GETINFO		
Name:	ODC2520	
Serial:	1301001	
Option:	000	
Article:	4321021	
MAC-Address:	00-0C-12-01-11-01	
Version:	005.024.035	
Image:	Ethernet	
Imagetype:	User	
Hardware-Rev:	008	
Measuring range	46.00mm or 95.00mm	
->		

Name: Model name of sensor

Serial: Serial number of sensor

Option: Option number of the sensor

Article: Article number of the sensor

MAC-Address: Address of network adapter

Version: Version of the booted software

Image: Active software Ethernet or EtherCAT

Image type: Type of booted software (Factory- oder User-Image)

Hardware-Rev: State of the used (programmable hardware)

. The Factory Image is installed by the manufacturer of the controller and cannot be overwritten.

An update of User Images can be done by the end user, see 9. If an error occurs when updating the User Images, then the Factory Images is loaded when the system starts the next time.

Error	Description	
E34	The sensor has not been trained or lost of flash memory	
	-> Send the sensor back to the manufacturer	

A 4.3.1.3 Reply Type

ECHO ON|OFF

The reply type describes the structure of a command reply.

ECHO ON: The command name and the command reply or an error message is output.

ECHO OFF: Only the command reply or an error message is returned.

A 4.3.1.4 Parameter Overview

PRINT

This command outputs a list of all setting parameters and its values.

PRINT ALL

This command outputs a list of all setting parameters and its values, as well as information such as GETINFO.

A 4.3.1.5 Synchronization

SYNC NONE | MASTER | SLAVE | [TERMON | TERMOFF]

Setting the type of synchronization:

- NONE: No synchronization
- MASTER: Receiver is master, i.e it outputs synchronization pulses
- SLAVE: Receiver is slave and receives synchronous pulses from another ODC 2520

Setting the termination of the sync / trigger input:

- TERMON: Termination (type 120 Ohm) on
- TERMOFF: No termination (terminating resistor 120 Ohm off)

In the MASTER mode, the second parameter is not evaluated.

Error	Description
E02	Incorrect parameter type (not a valid type of synchronization)
E11	Parameter 1 is too long (more than 31 characters)

- The synchronous connection (Sync In) is alternatively an input or an output.
- 1 Only one of the receivers may be always switched to master (and all the others on slave).

Moreover, the synchronous connection also serves as a trigger input, see Chap. 7.9, "Triggering".

A 4.3.1.6 Booting the Sensor

RESET

The receiver restarts.

A 4.3.2 User Level

A 4.3.2.1 Changing the User Level

LOGIN <Password>

Enter the password to switch to a different user level. The following user levels exist:

- USER: Read access to all elements + use of web diagrams
- PROFESSIONAL: Read/write access to all elements

Error	Description
E06	Access denied -> Incorrect password
E11	Password is too long (more than 31 characters)

A 4.3.2.2 Changing to User Level

LOGOUT

Sets the user level to USER.

A 4.3.2.3 Querying the User Level

GETUSERLEVEL

Request the current user level.

For possible responses, see Chap. A 4.3.2.1, "Changing the User Level".

A 4.3.2.4 Setting the User Level on Restart (Standard User)

STDUSER USER | PROFESSIONAL

Sets the standard user, who is logged in after system start.

A 4.3.2.5 Changing the Password

PASSWD <Old password> <New password> <New password>

Changes the password for the professional level. The default (preset) password is "000".

The old password must be entered once, and the new password twice. If the new passwords do not match, an error message is displayed. Passwords are case sensitive.

A password may only contain letters (A to Z) and numbers, but no special characters and no letters with accents or umlauts. The maximum length is 31 characters.

Returning to the factory settings (SETDEFAULT) by the professional, the password is reset to "000" (professional).

A 4.3.3 Video Signal

A 4.3.3.1 Light Correction

LIGHTCORR

Performs a light correction.

A 4.3.3.2 Edge Detection Threshold

```
THRESHOLD <Threshold>
```

Setting the detection threshold in % (0.0 up to 99.0 %, is given with one decimal place).

Please do not change the standard value as possible, since linearity is affected (only for transparent targets reasonable).

A 4.3.3.3 Reduction of Region of Interest

ROI <Start> <End>

Set region of interest. ROI for start and end must be between

- 46 mm: 0 ... 767 pixels
- 95 mm: 0 ... 1535 pixels.

The specification is effected in the unit pixels. "Start" value is smaller than "End" value.

A 4.4 Measurement

A 4.4.1 Measurement Distance Calibration Tables

A 4.4.1.1 Calibration Selection for a Measuring Distance

MEASDIST [<number>]

Each measurement distance is deposited a calibration table. Maximum 9 measuring distances can be selected. The parameter <number $> = 0 \dots 8$ corresponds to the position in the table for the selectable measuring distances (see MEASDISTTABLE).

A 4.4.1.2 Current Calibration Table for a Measuring Distance

MEASDISTINFO

Lists the current position of the measuring distance table and the associated measuring distance.

A 4.4.1.3 Table of all Calibrated Measuring Distances

MEASDISTTABLE

Lists all available calibrated measuring distances.

->MEASDISTTABLE			
Pos, Measuring c 0, 20.000 mm 1, 50.000 mm 2, 100.000 mm 3, 150.000 mm 4, unavailable 5, unavailable 6, unavailable 7, unavailable 8, unavailable	listance		
->			

A 4.4.2 Setting the Measurement Task

A 4.4.2.1 Measurement Program Selection

MEASMODE EDGEHL|EDGELH|DIA|GAP|SEGMENT

- EDGEHL: Edge low high; Position of the first low-high edge (distance from the beginning of the line)
- EDGELH: Edge high low; Position of the first high-low edge (distance from the beginning of the line)
- DIA: Diameter/width: Measure, position of single edges and center axis (first low-high and last high-low edge) of an outer diameter
- GAP: Gap: Measure, position of single edges and center axis (first high-low edge and next edge).
- SEGMENT: Any segments: Measurement between 2 selectable edges, also possible from edge zero (SMR).

A 4.4.2.2 Search Direction Edges

SEARCHDIR STANDARD | INVERSE

Specifies the direction of the edge search. The search direction determines the numbering respectively sequence of the edges, see Fig. 40.

- STANDARD: Standard (from rail)
- INVERSE: Reverse (from edge toward rail)

A 4.4.2.3 Measuring Direction Edges

MEASDIR STANDARD | INVERSE

The measuring direction determines the reference point of the measuring values, see Fig. 41 $\,$

- STANDARD: Standard (from rail)
- INVERSE: Reverse (from edge toward rail)

A 4.4.2.4 Number of Expected Edges

EXPEDGES <value>

If a certain edge number is always required for a correct measurement, this can be monitored, see command ERROROUT1 respectively ERROROUT2.

SMR = Start of measuring range

A 4.4.2.5 Definition of Segments

DEFSEG1	<edge< th=""><th>A></th><th><edge< th=""><th>B></th></edge<></th></edge<>	A>	<edge< th=""><th>B></th></edge<>	B>
DEFSEG2	<edge< td=""><td>$\mathbb{A}>$</td><td><edge< td=""><td>B></td></edge<></td></edge<>	$\mathbb{A}>$	<edge< td=""><td>B></td></edge<>	B>
DEFSEG3	<edge< td=""><td>A></td><td><edge< td=""><td>B></td></edge<></td></edge<>	A>	<edge< td=""><td>B></td></edge<>	B>
DEFSEG4	<edge< td=""><td>A></td><td><edge< td=""><td>B></td></edge<></td></edge<>	A>	<edge< td=""><td>B></td></edge<>	B>
DEFSEG5	<edge< td=""><td>A></td><td><edge< td=""><td>B></td></edge<></td></edge<>	A>	<edge< td=""><td>B></td></edge<>	B>
DEFSEG6	<edge< td=""><td>A></td><td><edge< td=""><td>B></td></edge<></td></edge<>	A>	<edge< td=""><td>B></td></edge<>	B>
DEFSEG7	<edge< td=""><td>A></td><td><edge< td=""><td>B></td></edge<></td></edge<>	A>	<edge< td=""><td>B></td></edge<>	B>
DEFSEG8	<edge< td=""><td>A></td><td><edge< td=""><td>B></td></edge<></td></edge<>	A>	<edge< td=""><td>B></td></edge<>	B>

Up to 8 segments can be measured.

The difference between two edges, the both single edges and the center axis is calculated in each case.

The sensor numbers internally all found edges in standard search direction (from start of measuring range).

The edges are selected for the respective segments with the performed commands

The sensor can process a maximum of 64 edges.

The value range for <edge A< and <edge B> is 0,1,2...64 and 0 is the start of measuring range.

A 4.4.2.6 Signal Names

- EHL: Edge low-high
- ELH: Edge high-low
- DA: Diameter, edge position A (first low-high edge)
- DB: Diameter, edge position B (last high-low edge)
- DD: Diameter (Difference |A-B|)
- DC: Diameter, center axis ((A+B)/2)
- GA: Gap, edge position A (first high-low edge)
- GB: Gap, edge position B (the edge, following on A)
- GD: Gap (difference |A-B|)
- GC: Gap, center axis ((A+B)/2)
- SnA: Edge position A of segment n (n = 1...8, e.g. S3A)
- SnB: Edge position B of segment n
- SnD: Difference between the edge positions A and B of segment n
- SnC: Center axis of segment n ((A+B)/2)

The selectable signals depend on the selected measurement program, see A 4.4.2.1:

- EDGEHL: EHL
- EDGELH: ELH
- DIA: DA, DB, DD, DC
- GAP: GA, GB, GD, GC
- SEGMENT: SnA, SnB, SnD, SnC

A 4.4.3 Measuring Value Processing

A 4.4.3.1 Averaging of Measuring Value

AVERAGE NONE | MOVING | RECURSIVE | MEDIAN [< Averaging depth >]

- NONE: No averaging value
- MOVING: Moving averaging (averaging depth 2, 4, 8, 16, 32, 64 and 128 possible)
- RECURSIVE: Recursive averaging (averaging depth 2 to 32768 possible)
- MEDIAN: Median (averaging depth 3, 5, 7 and 9 possible)

The averaging value always acts on all to be output edge, difference and center axis values.

A 4.4.3.2 Spike Correction

SPIKECORR [ON|OFF[[<Number of evaluated measured values>][[<Tolerance range in mm>][<Number of corrected values>]]]

Spike correction is not enabled in the factory settings.

Parameter	Factory setting	Min	Мах
Number of measuring values evaluated	3	1	10
Tolerance range in mm	0,100	0,0	46 mm
			95 mm
Number of corrected values	1	1	100

Fig. 84 Evaluation range spike correction

A 4.4.3.3 Error Processing

OUTHOLD NONE | 0 | <Number>

Setting the behavior of the measuring value output in case of error

- NONE: No holding the last measuring value, output of error value
- 0: Infinite holding of the last measuring values
- Number: Holding the last measuring value on the number of measuring cycles; then an error value (maximum of 1024) is output.

A 4.4.3.4 Selection of the Measuring Value for the 1st Statistics

STATISTICSIGNAL EHL|ELH|DA|DB|DD|DC|GA|GB|GD|GC|

S1A|S1B|S1D|S1C|S2A|S2B|S2D|S2C|S3A|S3B|S3D|S3C|S4A|S4B|S4D|S4C S5A|S5B|S5D|S5C|S6A|S6B|S6D|S6C|S7A|S7B|S7D|S7C|S8A|S8B|S8D|S8C

Designation of the signal for which the 1st statistical calculation is to be performed.

Signal names, see A 4.4.2.6

A 4.4.3.5 Selection of the Measuring Value for the 2nd Statistics

STATISTIC2SIGNAL EHL|ELH|DA|DB|DD|DC|GA|GB|GD|GC|

\$1A|\$1B|\$1D|\$1C|\$2A|\$2B|\$2D|\$2C|\$3A|\$3B|\$3D|\$3C|\$4A|\$4B|\$4D|\$4C \$5A|\$5B|\$5D|\$5C|\$6A|\$6B|\$6D|\$6C|\$7A|\$7B|\$7D|\$7C|\$8A|\$8B|\$8D|\$8C

Designation of the signal for which the 2nd statistical calculation is to be performed.

Signal names, see A 4.4.2.6

A 4.4.3.6 Setting the Statistics Calculation

STATISTICDEPTH ALL|2|4|8...|8192

Input about how many measuring values the statistics data minimum, maximum and peak-peak are determined.

The number of measuring values for the calculation can be between 2 and 8192 (in powers of 2) or include all measuring values.

A 4.4.3.7 Resetting the Statistics Calculation

RESETSTATISTIC

Reset the statistics data of the selected measuring value.

A 4.4.3.8 Selection of Measuring Value for Mastering / Zeroing

MASTERSIGNAL EHL|ELH|DA|DB|DD|DC|GA|GB|GD|GC|

S1A|S1B|S1D|S1C|S2A|S2B|S2D|S2C|S3A|S3B|S3D|S3C|S4A|S4B|S4D|S4C

```
S5A|S5B|S5D|S5C|S6A|S6B|S6D|S6C|S7A|S7B|S7D|S7C|S8A|S8B|S8D|S8C
```

Detection of the signal to be applied for the mastering respectively zeroing.

Signal names, see A 4.4.2.6

A 4.4.3.9 Mastering / Zeroing

- MASTERMV NONE | MASTER < Master value >
- NONE: Reset the mastering
- MASTER: Setting the current measuring value to the master value
- Master value: Default value in millimeter, value range: min: - measuring range [mm] max: + measuring range [mm]

Zeroing: Master value = 0

In case of master value is 0, then the mastering function has the same functionality as the zero setting. The master command awaits the next measurement value a maximum of 2 seconds and uses it as master value. If no measurement value is received within this time, for example, by external triggering, the command returns with the error "E32 Time-out". The master value is processed with three decimal places.

Both the mastering/zeroing as well as the resetting mastering/zeroing function resets the statistics.

A 4.5 Data Output via Digital Interfaces

A 4.5.1 Interface Settings

A 4.5.1.1 Selection Digital Output

- OUTPUT NONE | RS422 | ETHERNET
- NONE: No measuring value output
- RS422: Output of the measuring values via RS422
- ETHERNET: Output of the measuring values via Ethernet

A 4.5.1.2 Ethernet IP Settings

IPCONFIG DHCP | STATIC [<IPAddress> [<Netmask> [<Gateway>]]]

Set Ethernet interface.

DHCP: IP address and gateway are automatically requested by DHCP.

System looks for a LinkLocal address after approximately 2 minutes if no DHCP server is available.

STATIC: Set IP address, the netmask and the gateway in format xxx.xxx.xxx

Values stay the same if neither IP address, net mask nor gateway is typed in.

The sensor optoCONTROL 2520 uses the following factory settings:

Ethernet address type: static IP address

IP address: 169.254.168.150

Gateway: 169.254.1.1

Subnet mask: 255.255.255.0

Ethernet transmission type: Server TCP/IP

Port number: 1024

A 4.5.1.3 Setting for Ethernet Measuring Value Transmitting

MEASTRANSFER NONE|SERVER/TCP [<PORT>]|(CLIENT/TCP|CLIENT/UDP
[<IPAddress> [<Port>]])

The ODC 2520 can be operated as a server as well as a client for measurement output via Ethernet.

- NONE: No measuring value transmission via Ethernet follows.
- SERVER/TCP: Sensor provides a server for the typed in port, under which the measured values can be sent. This is only possible via TCP/IP.
- CLIENT/TCP: Sensor sends measured values via TCP/IP connection oriented to server. The specifying of the IP address and server port are required.
- CLIENT/UDP: Sensor sends connectionless measuring values via UDP/IP to server. Therefore the IP address and the server port are specified.
- IPAddress: IP address of the server, to which measuring values are sent when in client mode, (only valid for CLIENT/TCP or CLIENT/UDP).
- Port: Port, to which the server gets assigned to in server-mode or to which the measured values are sent in client-mode (min: 1024, max: 65535).
 Commands are expected for port 23; the data port is set to 1024 by default.

A 4.5.1.4 Setting RS422 Baud Rate

BAUDRATE <Baudrate>

Adjustable baud rates in examples:

9600, 115200, 230400, 460800, 691200, 921600, 1500000, 2000000, 2500000, 3000000, 3500000, 4000000

A 4.5.1.5 Change Ethernet / EtherCAT

ETHERMODE ETHERNET | ETHERCAT

From Ethernet to EtherCAT:

ETHERMODE ETHERCAT

You can not change directly to the EtherCAT interface through the web page. Restart your receiver to do this (Power on).

Ethernet is no longer available.

Save the current settings with the STORE n (Setup n = 1,2, ... 8) command before switching to EtherCAT.

Further notes can also be found in chapter Switching between Ethernet and EtherCAT, see 7.5.7.

From EtherCAT to Ethernet:

The RS422 interface for transmitting an ASCII command is available in both Ethernet mode as well as in the EtherCAT mode.

Send the ETHERMODE ETHERNET command via a RS422 connection to return to the Ethernet mode.

Save with the command STORE 1.

Ethernet is then available again after a reboot (Power on) of the receiver.

• When you return to the factory settings, it can also be reset to Ethernet, see A 2.2, see A 4.5.6.3.

You will find further instructions how to change from EtherCAT interface to Ethernet in the appendix EtherCAT, see A 6.

A 4.5.1.6 Reduce the Output Data Rate

OUTREDUCE <Out> [ANALOG|RS422|ETHERNET|NONE]

Reducing the measuring value output via the specified interfaces.

- 1: Output each measuring value
- 2...150000: Output of each nth measuring value

A 4.5.2 Select Measuring Values to be Output

A 4.5.2.1 Preliminary Remarks on the Measuring Value Selection

Setting the values to be output via the RS422 or Ethernet interface.

Maximum 32 measurement values are transmitted with RS422 in parallel.

The maximum output rate via the Ethernet interface depends on the number of output values.

The measuring values, which can be output depend on the selected measuring program. The edge programs can output only one edge, the measurement programs diameter and gap the both edge positions, the difference and the center axis position of these edges. With the measuring program segments maximum 32 measuring values can be output with 8 defined segments.

Note when you select data:

The settings of some other parameters have the effect of an inevitable output of measuring values.

Example:

- Measurement program edge low-high selected, analog output enabled,
- but the measuring value output locked with OUTEDGEHL_ETH NONE.

If you select the Ethernet interface for measuring value output, the measuring value EHL is output.

A request OUTEDGEHL_ETH without parameter returns OUTEDGEHL_ETH EHL as reply.

The cause is the enabled analog output which must process a measuring value.

When activating the functions limit value monitoring, statistics or zeroing / mastering at least a measuring value is output, for which this function has been set.

A 4.5.2.2 Output of Measuring Values Edge Low-High via RS422 and Ethernet

OUTEDGEHL_RS422 NONE | EHL OUTEDGEHL_ETH NONE | EHL Signal names, see A 4.4.2.6

A 4.5.2.3 Output of the Measuring Values Edge High-Low via RS422 and Ethernet

```
OUTEDGELH_RS422 NONE | ELH
OUTEDGELH_ETH NONE | ELH
Signal names, see A 4.4.2.6
```

A 4.5.2.4 Output of the Diameter Data via RS422 and via Ethernet

OUTDIA_RS422 NONE | ([DD] [DA] [DB] [DC]) OUTDIA_ETH NONE | ([DD] [DA] [DB] [DC]) Signal names, see A 4.4.2.6

A 4.5.2.5 Output of the Gap Data via RS422 and Ethernet

```
OUTGAP_RS422 NONE | ([GD] [GA] [GB] [GC])
OUTGAP_ETH NONE | ([GD] [GA] [GB] [GC])
Signal names, see A 4.4.2.6
```

A 4.5.2.6 Output of the Segment Data via RS422 and Ethernet

OUTSEG_RS422	NONE ([S1D]	[S1A]	[S1B]	[S1C]	[S2D]	[S2A]	[S2B]	[S2C]
	[S3D]	[S3A]	[S3B]	[S3C]	[S4D]	[S4A]	[S4B]	[S4C]
	[S5D]	[S5A]	[S5B]	[S5C]	[S6D]	[S6A]	[S6B]	[S6C]
	[S7D]	[S7A]	[S7B]	[S7C]	[S8D]	[S8A]	[S8B]	[S8C])
OUTSEG_ETH	NONE ([S1D]	[S1A]	[S1B]	[S1C]	[S2D]	[S2A]	[S2B]	[S2C]
	[S3D]	[S3A]	[S3B]	[S3C]	[S4D]	[S4A]	[S4B]	[S4C]
	[S5D]	[S5A]	[S5B]	[S5C]	[S6D]	[S6A]	[S6B]	[S6C]
	[S7D]	[S7A]	[S7B]	[S7C]	[S8D]	[S8A]	[S8B]	[S8C])
Signal names, see A 4.4.2.6								

A 4.5.2.7 Output of the Additional Data via RS422 and Ethernet

```
OUTADD_ETH NONE | ([NBEDGES] [NBPINS] [NBGAPS] [COUNTER] [STATE]
[TIMESTAMP])
OUTADD_RS422 NONE | ([NBEDGES] [NBPINS] [NBGAPS] [COUNTER] [STATE]
[TIMESTAMP])
```

Designation of additional outputs. Several additional data can also be output via Ethernet.

- NONE: No further outputs
- NBEDGES: Output of the number of edges
- NBPINS: Output of the number of pins
- NBGAPS: Output of the number of gaps
- COUNTER: Output of the edge counter
- STATE: Output of the error state
- TIMESTAMP: Output of the time stamp

A 4.5.2.8 Output of the Statistics Data via RS422 and Ethernet

```
OUTSTATISTIC_RS422 NONE | ([MIN] [MAX] [PEAK2PEAK] [MIN2] [MAX2]
[PEAK2PEAK2])
OUTSTATISTIC_ETH NONE | ([MIN] [MAX] [PEAK2PEAK] [MIN2] [MAX2]
[PEAK2PEAK2])
```

- NONE: No output of statistics
- MIN: Output of the minimum 1st statistic
- MAX: Output of the maximum 1st statistic
- PEAK2PEAK: Output of peak to peak 1st statistic
- MIN2: Output of the minimum 2st statistic
- MAX2: Output of the maximum 2st statistic
- PEAK2PEAK2: Output of peak to peak 2st statistic

Output of the selected statistics data, see A 4.4.3.4

A 4.5.2.9 Output of Video Signals via Ethernet

OUTVID_ETH NONE | ([RAW] [LIGHT] [LIGHTTAB] [THRES])

- NONE: No output of video signals
- RAW: Output of the raw signal
- LIGHT: Output of the light corrected signal
- LIGHTTAB: Output of the light correction table
- THRES: Output of the threshold table

A 4.5.3 Switching Outputs

A 4.5.3.1 Assignment of the Switch Outputs

```
ERROROUT1 NONE | LI1 | LI2 | LI12 | ER1 | ER2
ERROROUT2 NONE | LI1 | LI2 | LI12 | ER1 | ER2
```

Setting the error switching outputs.

- NONE: No output on the error switching outputs
- LI1: Switching output is switched in case of deceeding the lower limit.
- LI2: Switching output is switched in case of exceeding the upper limit.
- LI12: Switching output is switched in case of deceeding the lower limit or exceeding the upper limit.
- ER1: Switching output is switched with edge number wrongly to be expected.
- ER2: Switching output is switched with a measuring value error (e.g. no edge found).

A 4.5.3.2 Hold Period of Switching Outputs

```
ERROROUTHOLD1 NONE | < hold period [ms] > ERROROUTHOLD2 NONE | < hold period [ms] >
```

Setting the hold period of switching outputs

- NONE: No hold period
- Hold period [ms]: 1 ... 10000, activation a hold period, that means the deactivation of the active switching output is delayed by the hold period.

A 4.5.3.3 Setting Limit Values

```
ERRORLIMIT EHL|ELH|DA|DB|DD|DC|GA|GB|GD|GC|
S1A|S1B|S1D|S1C|S2A|S2B|S2D|S2C|S3A|S3B|S3D|S3C|S4A|S4B|S4D|S4C
S5A|S5B|S5D|S5C|S6A|S6B|S6D|S6C|S7A|S7B|S7D|S7C|S8A|S8B|S8D|S8C
[<lower limit> [<upper limit>]]
```

Selection of the signal and setting the limits for a limit consideration via the switching outputs.

EHL...S8C: The limit values refer to measuring value edge low-high (EHL).

Signal names, see A 4.4.2.6

The limits are specified in millimeters and must be between

- 46 mm: -100.0 ... +100.0
- 95 mm: -200.0 ... +200.0

A 4.5.3.4 Switching Level (Active Level)

ERRORLEVELOUT1 NPN | PNP | PUSHPULL | PUSHPULLNEG ERRORLEVELOUT2 NPN | PNP | PUSHPULL | PUSHPULLNEG

- NPN: Switching output is active upon error.
- PNP: Switching output is active upon error.
- PUSHPULL: Switching output is high upon error.
- PUSHPULLNEG: Switching output is low upon error.

Wiring of the switching outputs, see Chap. 5.3.8.

A 4.5.4 Analog Output

A 4.5.4.1 Data Selection for the Analog Output

ANALOGOUT EHL|ELH|DA|DB|DD|DC|GA|GB|GD|GC| S1A|S1B|S1D|S1C|S2A|S2B|S2D|S2C|S3A|S3B|S3D|S3C|S4A|S4B|S4D|S4C S5A|S5B|S5D|S5C|S6A|S6B|S6D|S6C|S7A|S7B|S7D|S7C|S8A|S8B|S8D|S8C Selection of the signal which should be output via the analog output.

Signal names see A 5.4.2.6

• Only one measuring value can be transmitted analogously.

A 4.5.4.2 Disable / Enable the Analog Output

ANALOGRANGE NONE | 0-10V

- NONE: No analog output (inactive)
- 0 10 V: The analog output outputs a voltage of 0 to 10 volts.

A 4.5.4.3 Scaling of the Analog Output

```
ANALOGSCALE STANDARD | (TWOPOINT <Minimaler Messwert> <Maximaler Messwert>)
```

Setting the scaling of analog output.

STANDARD: The standard setting is fixed by 0 to MR (MR = measuring range).

TWOPOINT: "Two-point scaling": The available output range of the analog output is then spread between the minimum and maximum measuring value.

The minimum and maximum measuring value is output in millimeters. The minimum and maximum measuring value must be between

- 46 mm: -100.0 ... +100.0
- 95 mm: -200.0 ... +200.0.

In case of minimum and maximum measuring value is ,0⁴, the default scaling is used.

A 4.5.5 Triggering

A 4.5.5.1 Preliminary Remarks to the Triggering

The trigger input serves also as synchronous input, which means triggering is possible only alternatively to sync mode, see Chap. 7.9.

A 4.5.5.2 Trigger Type

TRIGGER NONE | EDGE | PULSE | SOFTWARE [TERMON | TERMOFF]

- NONE: No triggering
- PULSE: Level triggering
- EDGE: Edge triggering
- SOFTWARE: Software triggering

Setting the termination of the sync / trigger input:

- TERMON: Termination (load resistance 120 Ohm) on
- TERMOFF: No termination (load resistance 120 Ohm off)

A 4.5.5.3 Effect of the Trigger Input

TRIGGERAT [INPUT|OUTPUT]

- INPUT: Triggering the measured value recording. When calculating the mean, measuring values immediately before the trigger event are not included; instead older measuring values are used, which were the output in previous trigger events.
- OUTPUT: Triggering the measurement value output. When calculating the mean, measuring values immediately before the trigger event are used.

Triggering of measuring value recording (INPUT) is enabled as a factory default setting.

A 4.5.5.4 Trigger Level (Active Level of the Trigger Input)

TRIGGERLEVEL HIGH | LOW

- HIGH: Edge triggering: Rising edge, level triggering: High-active
- LOW: Edge triggering, level triggering: Low-active

A 4.5.5.5 Number of Output Measuring Values

TRIGGERCOUNT <1...16382>|16383

Number of measuring values which are displayed when edge or software triggering.

- 1...16382: Number of measurement values which are displayed after a trigger impulse when edge triggering or software triggering.
- 16383: Start infinite output of measurement values after a trigger impulse when edge triggering or software triggering.
- 0: Stop triggering

A 4.5.5.6 Software Trigger Pulse (Creating a Software Trigger Signal)

TRIGGERSW

Creates a software trigger pulse.

Error	Description
E43	Software triggering is disabled, software trigger pulse cannot be triggered.

A 4.5.6 Parameter Management, Load / Save Settings

A 4.5.6.1 Save Parameter Set

STORE 1|2|3|4|5|6|7|8

Save the current parameter under the specified setup number from the flash of the receiver.

A 4.5.6.2 Load Parameter Set

READ ALL|DEVICE|MEAS 1|2|3|4|5|6|7|8

Load the parameter under the specified number from the flash.

In addition, the size of the loaded data needs to be specified:

- ALL: All parameters are loaded.
- DEVICE: Only the standard device settings are loaded (interface parameter).
- MEAS: Only the measurement settings are loaded (all features for the measurement).

A 4.5.6.3 Reset to Factory Settings

SETDEFAULT ALL | CURRENT [NODEVICE]

Set the default settings (reset to default setting).

- ALL: All setups are deleted and default parameters are loaded.
- NODEVICE: All setups are deleted and default parameters are loaded. Settings of IP address and RS422 and for language, password and analog output are kept temporarily.
- CURRENT: The current setup is reset to the factory setting.

A 4.5.6.4 Measuring Unit Web Interface

UNIT MM INCH

Changes the measurement display on the web pages. The command has no effect on the ASCII interface.

- MM: Representation in millimeter
- INCH: Representation in inches

A 4.5.7 Measuring Data

A 4.5.7.1 Measuring Value Format

This chapter describes the assembly of measured value frames. Informations to transfer via Ethernet or RS422 succeed, see A 4.5.7.

The data block has a fixed structure (sequence):

- Video signals (+ adjustments) (N * 768 1 pixel * 16 bit), with N = {0,1,2,3,4,5,6,7}
- Measuring value counter (1 * 32 bit)
- Time stamp (1 * 32 bit)
- Error status (1 * 32 bit)
- Number of edges
- Number of pins
- Number of gaps
- Measuring values (max. n * 32 bit), with $n = \{0, 1, 2...32\}$ depends on the selected measuring program
- Statistic values (min/max/peak2peak/min2/max2/peak2peak2) (per 32 bit)

The measuring value frame is set up dynamically, that means not selected values, see Fig. 85, are not transmitted.

Fig. 85 Example for a data transmission via Ethernet

1) With -95 mm MR 1536 pixels

A 4.5.7.2 Video Signal

Video signals, which were calculated in signal processing, can be transmitted. A video signal consists of the following pixels:

Sensor	Pixel
optoCONTROL 2520-46	768
optoCONTROL 2520-95	1536

A pixel is described by a 16 bit word. The used value range is 0 ... 4095.

There are four available video signals:

- Raw signal
- Light corrected signal
- Light values table
- Edge detection threshold

Data structure of video signals:

Pixel 0	Pixel 2		Pixel 511
Raw signal, 16 bit	Raw signal		Raw signal
Light corrected signal, 16 bit	Light corrected signal		Light corrected signal
Light values table, 16 bit	Light values table	•••	Light values table
Peak detection threshold, 16 bit	Peak detection threshold		Edge detection threshold

A 4.5.7.3 Measuring Value Counter

The transmission of the measuring value counter via Ethernet is effected as 32 bit value (unsigned integer).

On RS422 interface, only the lower 18 bits of the measuring value counter are transmitted.

A 4.5.7.4 Time Stamp

Intrasystem the resolution of time stamp is 1 μ s. For the Ethernet transfer a 32 bit data word (unsigned integer) with the intrasystem resolution is output.

During transmission via RS422 only the bits 25 up to 8 of the time stamp are provided in a 18 bit data word. It follows a resolution of 0.25 ms, an overflow is effected after approximately 65 seconds.

A 4.5.7.5 Number of Edges

The transmission of the number of edges via Ethernet takes place as a 32 bit value (unsigned integer). Bit 31 indicates whether the value is triggered.

On the RS422 interface, only the lower 18 bits of the number of edges are transmitted, i.e. the identification as triggered value is eliminated.

A 4.5.7.6 Number of Pins

The transmission of the number of pins via Ethernet takes place as a 32 bit value (unsigned integer). Bit 31 indicates whether the value is triggered.

On the RS422 interface, only the lower 18 bits of the number of pins are transmitted, i.e. the identification as triggered value is eliminated.

A 4.5.7.7 Number of Gaps

The transmission of the number of gaps via Ethernet takes place as a 32 bit value (unsigned integer). Bit 31 indicates whether the value is triggered.

On the RS422 interface, only the lower 18 bits of the number of gaps are transmitted, i.e. the identification as triggered value is eliminated.

A 4.5.7.8 Status

The status word provides the status on the outputs (pins and LEDs).

Bit position	Description
0 up to 14	Reserved for general module error.
15	Measuring value is triggered.
16	IN 1, input from the output driver OUT 1
17	OE 1 Free circuit from the output driver OUT 1
18	IN 2 Input from the output driver OUT 2
19	OE 2 Free circuit from the output driver OUT 2
20	Synchronization active
21 up to 23	Reserved
24 + 25	LED "Link" 00 off, 01 green, 10 red, 11 yellow, see Chap. 5.4 LEDs on Receiver
26 + 27	LED "Speed" 00 off, 01 green, 10 red, 11 yellow, see Chap. 5.4 LEDs on Receiver
28 + 29	LED "Status" 00 off, 01 green, 10 red, 11 yellow, see Chap. 5.4 LEDs on Receiver
30 + 31	LED "Power" 00 off, 01 green, 10 red, 11 vellow, see Chap, 5,4 LEDs on Receiver

Fig. 86 Bit structure of the error status word

During transmission via RS422 only the upper bits 16 up to 31 of error status word are transmitted. For the Ethernet transfer are all 32 bits ready to issue.

Comment to bit 16 up to 19:

IN 1/2 and OE 1/2 are the internal inputs of the circuits to the switching outputs OUT 1/2:

IN (Signal):

 $IN = L \Rightarrow OUT$ switches to low (GND, down);

 $IN = H \iff OUT$ switches to high (+ UB, up)

OE (Output enable):

 $OE = L \iff OUT \text{ passive (open)};$

 $OE = H \iff OUT$ active (switched).

Thus, the switching behavior of the switching outputs OUT 1/2 can be realized as PNP, NPN, push-pull or push-pull-negated, see Chap. 5.3.8.

A 4.5.7.9 Measuring Data

Up to maximum 32 measuring values can be output depending on the selected measuring program.

Measuring program	Max. number of measuring values n	Sequence according to selection
Edge low-high	1	EHL First edge low-high
Edge high-low	1	EHL First edge high-low
Diameter	4	DA First edge low-high DB Last edge low-high DD Difference (DB-DA) DC Center axis ((DA + DB)/2)
Gap	4	GA First edge high-low GB Subsequent edge GD Difference (GB-GA) GC Center axis ((GA+GB)/2)
Any segments	32	S1A Edge A segment 1 S1B Edge B segment 1 S1D Difference (S1B-S1A) S1C Center axis ((S1A+S1B)/2) S8A Edge A segment 1 S8B Edge B segment 1 S8D Difference (S1B-S1A) S8C Center axis ((S1A+S1B)/2)

The measurement values are provided as 32 bit signed integer with 1 nm resolution. The RS422 interface outputs 18 bit signed integer values with the following resolution:

optoCONTROL 2520-46: 1 μ m with an offset = 131000

optoCONTROL 2520-95: 2 μ m with an offset = 131000

The measuring values are displayed as 32 bit signed integer value with a resolution of 1 nm. 18 bit signed integer values with a resolution of 1 μ m are output provided with an offset = 131000 via the RS422 interface.

A 4.5.7.10 Statistic Values

The statistic values have the same format as the measuring values.

At first minimum, then maximum and at the end peak to peak is transmitted (if selected).

The statistic values are displayed as 32 bit signed integer value with a resolution of

optoCONTROL 2520-46: 1 μm

optoCONTROL 2520-95: 2 μm

respectively in format for the RS422 interface.
A 4.5.8 Measuring Data Format

A 4.5.8.1 Data Format RS422 Interface

The output of edge positions, differences, center axes and statistic values via RS422 needs a subsequent conversion in micrometers (μ m). Other values as time stamp, measuring value counter or status data are transmitted as 18 bit data words, a conversion is not required.

Measuring value 1:

	Prea	mble		Data bits				
L-byte	0	0	D5	D4	D3	D2	D1	D0
M-byte	0	1	D11	D10	D9	D8	D7	D6
H-byte	1	0	D17	D16	D15	D14	D13	D12

Measuring value 2 ... 32:

	Prea	mble		Data bits				
L-byte	0	0	D5	D4	D3	D2	D1	D0
M-byte	0	1	D11	D10	D9	D8	D7	D6
H-byte	1	1	D17	D16	D15	D14	D13	D12

The linearized measuring values can be converted in μ m using the following formula:

Measuring range	-46	-95
Formula	$x [\mu m] = d_{out} - 131000$	x [µm] = 2 * (d _{out} - 131000)

A 4.5.8.2 Error Codes RS422 Interface

All values greater than 262072 are error values and are defined as follows:

Fehler code	Description
262073	Scaling error RS422 interface underflow
262074	Scaling error RS422 interface overflow
262075	Too much data for selected baud rate 1
262076	There is no edge present.
262079	Measuring value cannot be calculated.

To remove the error, there are the following possibilities:

- Increase the baud rate, see A 4.5.1.4
- Decrease data; if 2 data words have been selected, then reduce to a data word, see A 4.5.2.
- Reduce output data rate, see A 4.5.1.6

For all the other data outputs except the measuring value data the restrictions are defined in the suitable segments, see A 4.5

1) This error occurs when more data are to be output as with selected baud rate can be transmitted.

A 4.5.8.3 Measuring Data Transmission to a Measuring Value Server via Ethernet

During the measurement data transmission to a measurement value server the sensor transmits each measurement value to the measurement value server or to the connected client after successful connection (TCP or UDP). Therefore no explicit requirement is necessary.

All distances and additional informations to be transmitted, which were recorded at a time, are combined to a measurement value frame. Different measurement value frames are combined to a measurement value block, which contains a header and fits a TCP/IP or UDP/IP packet. The header is mandatory at the start of a UDP or TCP packet. In case of changes of the transferred data or the frame rate a new header is automatically sent.

Il measurement data and the header are transmitted in the little Endian format.

Preamble (32 bit)					
Order num	ber (32 bit)				
Serial num	ber (32 bit)				
Flags 1 (32 bit)					
Flags 2 (32 bit)					
Flags 3 (32 bit)					
Frame number (16 bit) Bytes per Frame (16 bit)					
Counter (32 bit)					

Header input	Description					
Preamble	Identifies the header					
	- 0x4D454133 Measuring data or					
	- 0x56494433 Video data					
Order number	Order number of the sensor					
Serial number	Serial number of the sensor					
Flags 1						
Flags 2	Provide information about the content of the measuring values.					
Flags 3						
Bytes per Frame	Number of bytes which a measuring value frame contains.					
Frame number	Number of frames which covers this header.					
Counter	Counter on the number of processed measuring values					

Header						Frame n	Header	
Preamble (32 Bit)	Order Number (32 Bit)	Serial Number (32 Bit)	Flags 1 (32 Bit)	Flags 2 (32 Bit)	Flags 3 (32 Bit)			

Example: The data ... (for example diameter and center axis?) are transmitted.

Description Flags 1

• •	
Flag bit	Description
0	Raw signal
1	Reserved
2	Light corrected signal
3	Reserved
4	Reserved
5	Light values table
6	Threshold table
7 up to 8	Reserved
9	Measuring value counter
10	Time stamp
11	Status
12	Number of edges

13	Number of pins
14	Number of gaps
15 up to 17	Reserved
18	Measuring value edge position A
19	Measuring value edge position B
20	Measuring value difference
21	Measuring value center axis
22 up to 31	Reserved

Comment to flag bit 18 up to 21:

The output measuring values are designated for the measuring programs as follows:

		When bit is set					
Measuring program	Edge A	Edge B	Difference	Center axis	Comment		
Edge low-high	Х	-	-	-			
Edge high-low	Х	-	-	-			
Diameter / width	Х	Х	Х	Х	depends on selection		
Gap	Х				depends on selection		
Any segments	-	-	-	-	See Flags 2		

Description Flags 2

Flag bit	Description
0	Measuring value segment 1 edge position A
1	Measuring value segment 1 edge position B
2	Measuring value segment 1 difference
3	Measuring value segment 1 center axis
4	Measuring value segment 2 edge position A
5	Measuring value segment 2 edge position B
6	Measuring value segment 2 difference
7	Measuring value segment 2 center axis
8	Measuring value segment 3 edge position A
9	Measuring value segment 3 edge position B
10	Measuring value segment 3 difference
11	Measuring value segment 3 center axis
12	Measuring value segment 4 edge position A
13	Measuring value segment 4 edge position B
14	Measuring value segment 4 difference
15	Measuring value segment 4 center axis
16	Measuring value segment 5 edge position A
17	Measuring value segment 5 edge position B
18	Measuring value segment 5 difference
19	Measuring value segment 5 center axis
20	Measuring value segment 6 edge position A
21	Measuring value segment 6 edge position B
22	Measuring value segment 6 difference
23	Measuring value segment 6 center axis
24	Measuring value segment 7 edge position A
25	Measuring value segment 7 edge position B
26	Measuring value segment 7 difference
27	Measuring value segment 7 center axis
28	Measuring value segment 8 edge position A
29	Measuring value segment 8 edge position B
30	Measuring value segment 8 difference
31	Measuring value segment 8 center axis

Description Flags 3

Flag bit	Description
0	1. Statistics minimum
1	1. Statistics maximum
2	1. Statistics peak to peak
3	2. Statistics minimum
4	2. Statistics maximum
5	2. Statistics peak to peak
6 up to 31	Reserved

A 4.5.8.4 Error Codes Ethernet Interface

Error code	Description
0x7fffffb	There is no edge present.
0x7ffffff8	Measuring value cannot be calculated.

A 4.5.8.5 Ethernet Video Signal Transmission

Set video output

OUTVID_ETH NONE NONE | ([RAW] [LIGHT] [LIGHTTAB] [THRES])

Setting of the data which are transmitted in a video signal transmission.

- NONE: No output of video signals
- RAW: Output of the raw signal
- LIGHT: Output of the light corrected signal
- LIGHTTAB: Output of the light corrected table
- THRES: Output of the detection threshold

The video signal transmission is effected to a measurement value server via Ethernet, , see A 4.5.8.3. This measuring value block can vary also over different TCP/IP or UDP/IP packets depending on the size of the video signal.

The preamble for the video signals is 0x56494445 (conforms "VIDE").

A 4.5.8.6 Switching the Laser Light Source

Laser OFF | ON

Switches the laser.

Error message: E66 The laser is switched off - e.g. light correction with Laser OFF.

A 4.6 Warning and Error Messages

The following table lists all warning messages:

Warning message	Description
W01 EtherCAT stopped.	EtherCAT has stopped.
W03 Reset Master	Zero setting/mastering has been disabled.
W04 The output starts after switch to mode EtherCAT.	The output is activated after switching to the EtherCAT mode.
W05 EtherCAT will be activated after saving the settings and restarting the sensor.	EtherCAT is only activated after saving the set- tings and restarting the sensor.
W07 There are more readings output as configured	There are more measuring values output as configured.
W08 The sensor must be rebooted.	The sensor must be restarted (reboot).
W10 Warning light source reference, light corrected signal bad (tolerance band).	Light corrected signal is bad (tolerance band).

The following table lists all error messages:

Error message	Description
E01 Unknown command	Unknown command (permissions too small to read).
E02 Wrong or unknown parameter type	A transferred parameter has a wrong type or it was the wrong number of parameters trans- ferred.
E03 Internal error	Internal error code
E04 I/O operation failed	Can not write data to the output channel.
E05 The entered command is too long to be processed.	The entered command with the parameters is too long (greater than 255 bytes).
E06 Access denied	Access denied; login as professional is neces- sary.
E07 The answer is too long to be displayed by this interpreter.	Answer is too long.
E08 Unknown parameter	Unknown parameter
E09 The command or parameter processing has been canceled.	The command was canceled.
E10 The command or parameter processing is pending.	Command or parameters are being processed.
E11 The entered value is out of range or its format is invalid.	The parameter value is out of range of the value range.
E12 The info-data of the update are wrong.	For update only. The header of the update data contains an error.
E13 Error during the data transmis- sion for the update	For update only. Error during update data trans- mission.
E14 Timeout during the update.	For update only: Timeout in the transfer of up- date data.
E15 Update file is too big.	For update only: The update data are too large.
E16 Timeout, command aborted.	The corrections have been aborted with a time- out.
E17 Processing aborted.	Upload data is too large, aborted process
E18 A signal transfer is already active. Please stop this.	A measuring value transmission is active. Please, only stop to be able to execute the command.

Error Message	Description
E19 The file is not valid for this sensor.	The transferred parameter file is for a different sensor type.
E20 Invalid file type	Invalid file type (setup file)
E21 Versions do not match.	The versions do not match (setup file)
E22 Checksum invalid	Checksum invalid (setup file)
E23 The set of parameters does not exist.	The set of parameters do not exist.
E26 No signals selected.	There were no measuring values selected for transmission.
E27 Invalid combination of signal parameters - please check measure mode and selected signals.	Invalid signal combination - please check the measuring program and selected signal.
E30 The master value is out of range.	The master value is out of range.
E32 Timeout	Timeout during mastering
E33 Wrong parameter count	Too high or too small number of parameters
E34 The sensor has no calibration data.	The sensor has no calibration data.
E35 Cannot start transfer of measure- ment data.	Measuring value output cannot boot (only adjust- ments).
E37 ROI start must be lower than end.	Value for the left side of the mask must be less than the right value.
E38 Too much output values for RS422 enabled.	Too much output values for RS422 enabled.
E41 The given passwords are not equal.	Errors in the repeated input of the new password.
E43 Software triggering is not active.	Software triggering is not enabled, no software trigger pulse can be triggered.
E46 Unsupported character	An unsupported character is received.
E51 The given signal is not selected for output.	The current signal is not selected for output.
E55 Synchronization and triggering at level or edge are not possible at the same time.	Synchronization and level or edge triggering cannot be specified.
E56 Video signal is to dark	The video signal is too dark.
E57 Measuring distance is unavail- able.	Measuring distance is not available.
E58 Lower threshold is greater than upper threshold.	Lower threshold is greater than upper threshold.
E59 Error light source reference, video signal to dark at maximum laser power, lamp defective or dirty.	Error light source reference, video signal too high at laser maximum, lamp failure or dirty.
E60 Error light source reference, mea- sured object in the measuring range.	Error light source reference, target in measuring range.
E61 Error light source reference, lamp out, but raw signal to light, lamp defective.	Error light source reference, raw signal too low when laser off, lamp defective.
E65 A segment 0-0 is used for the output or calculation.	A non-defined segment (0-0) is used for output or calculation.
E66 Laser switched off - e.g. light correction with Laser OFF.	The laser is switched off - e.g. light correction with Laser OFF.

A 5 Telnet

The Telnet commands enable you to communicate with the optoCONTROL 2520 from your PC.

A 5.1 General

A 5.1.1 Requirement

For communication with Telnet, you need an existing Ethernet connection between optoCONTROL 2520 and your PC. For Win 7 users: ask your system administrator, if the Telnet client does not work.

A 5.1.2 Link Connection

- Start he program Telnet.exe via Start menu > Process.
- Type in the command telnet 169.254.168.150 or the IP address of the opto-CONTROL 2520.

Fig. 87 Telnet start screen of the optoCONTROL 2520

A command always consists on the command name and zero or more parameters, separated by spaces. The currently selected parameter value is returned when a command without parameters is called.

The output format is:

<Command name> <Parameter1> [<Parameter2> [...]]

The returned command can be used again for setting the parameter without changes. After processing a command a carriage return and a prompt return ($_{,-}>$ ") is always returned. If an error occurs an error message that begins with "Exx", is before the prompt; where xx is a unique error number.

A 5.1.3 Error Messages

The following error messages may occur:

- E01 Unknown command: An unknown parameter ID was transferred.
- E06 Access denied: This parameter cannot be accessed currently. Maybe the sensor is not in the professional mode or the parameter is not visible by other settings.
- E08 Unknown parameter: There were too few parameters transferred.
- E11 The input value is outside the valid range, or the format is invalid: The transferred value is outside the valid range.

The text of the error messages depends on the selected language. The ID of the error message (Exx) is the same for each language.

A 5.2 Example

Query the sensor information with the command GETINFO.

🗪 Telnet 169.254.16	8.150	
->getinfo		
Name: Serial: Option: Article: MAC-Address: Version: Image: Image: Hardware-Rev: ->_	ODC2520 1301001 000 4321021 00-0C-12-01-11-01 003.015.020 Ethernet User 008	•

Measured value transfer: Measured values are sent via port 1024 by default.
 However, measured value requests must be sent via port 23 by command.

A 6 EtherCAT Documentation

A 6.1 General

EtherCAT® is, from the Ethernet viewpoint, a single, large Ethernet station that transmits and receives Ethernet telegrams. Such an EtherCAT system consists of an EtherCAT master and up to 65535 EtherCAT slaves.

Master and slaves communicate via a standard Ethernet wiring. On-the-fly processing hardware is used in each slave. The incoming Ethernet frames are directly processed by the hardware. Relevant data are extracted or added from the frame. The frame is subsequently forwarded to the next EtherCAT® slave device. The completely processed frame is sent back from the last slave device. Various protocols can be used in the application level. CANopen over EtherCAT technology (CoE) is supported here. In the CANopen protocol, an object tree with Service Data Objects (SDO) and Process Data Objects (PDO) is used to manage the data.

Further information can be obtained from ® Technology Group (www.ethercat.org) or Beckhoff GmbH, (www.beckhoff.com).

- EtherCAT must be activated for communication with the sensor via EtherCAT. Ob-
- l serve the notes for a change between Ethernet and EtherCAT, see 7.5.7.

A 6.2 Introduction

A 6.2.1 Structure of EtherCAT®-Frames

The transfer of data occurs in Ethernet frames with a special Ether type (0x88A4). Such an EtherCAT® frame consists of one or several EtherCAT® telegrams, each of which is addressed to individual slaves / storage areas. The telegrams are either transmitted directly in the data area of the Ethernet frame or in the data area of the UDP datagram. An EtherCAT® telegram consists of an EtherCAT® header, the data area and the work counter (WC). The work counter is incremented by each addressed EtherCAT® slave that exchanged the corresponding data.

Fig. 88 Setup of EtherCAT frames

A 6.2.2 EtherCAT® Services

In EtherCAT® services for the reading and writing of data are specified in the physical memory of the slave hardware. The following EtherCAT® services are supported by the slave hardware:

- APRD (Autoincrement physical read, Reading of a physical area with auto-increment addressing)
- APWR (Autoincrement physical write, Writing of a physical area with auto-increment addressing)
- APRW (Autoincrement physical read write, Reading and writing of a physical area with auto-increment addressing)
- FPRD (Configured address read, Reading of a physical area with fixed addressing)
- FPWR (Configured address write, Writing of a physical area with fixed addressing)
- FPRW (Configured address read write, Reading and writing of a physical area with fixed addressing)
- BRD (Broadcast Read, Broadcast Reading of a physical area for all slaves)
- BWR (Broadcast Write, Broadcast Writing of a physical area for all slaves)
- LRD (Logical read, Reading of a logical storage area)
- LWR (Logical write, Writing of a logical storage area)

- LRW (Logical read write, Reading and writing of a logical storage area)
- ARMW (Auto increment physical read multiple write, Reading of a physical area with auto-increment addressing, multiple writing)
- FRMW (Configured address read multiple write, Reading of a physical area with fixed addressing, multiple writing)

A 6.2.3 Addressing and FMMUs

In order to address a slave in the EtherCAT® system, various methods from the master can be used. The confocalDT 24x1 supports as full slave:

- Position addressing

The slave device is addressed via its physical position in the EtherCAT® segment. The services used for this are APRD, APWR, APRW.

- Node addressing

The slave device is addressed via a configured node address, which was assigned by the master during the commissioning phase. The services used for this are FPRD, FPWR and FPRW.

- Logical addressing

The slaves are not addressed individually; instead, a segment of the segment-wide logical 4-GB address is addressed. This segment can be used by a number of slaves. The services used for this are LRD, LWR and LRW.

The local assignment of physical slave memory addresses and logical segment-wide addresses is implemented via the field bus Memory Management Units (FMMUs). The configuration of the slave FMMUs is implemented by the master. The FMMU configuration contains a start address of the physical memory in the slave, a logical start address in the global address space, length and type of the data, as well as the direction (input or output) of the process data.

A 6.2.4 Sync Manager

Sync Managers serve the data consistency during the data exchange between Ether-CAT® master and slaves. Each Sync Manager channel defines an area of the application memory. The confocalDT 24x1 has four channels:

- Sync-Manager Channel 0: Sync Manager 0 is used for mailbox write transfers (mailbox from master to slave).
- Sync-Manager Channel 1: Sync Manager 1 is used for mailbox read transfers (mailbox from slave to master).
- Sync-Manager Channel 2: Sync Manager 2 is usually used for process output data. Not used in the sensor.
- Sync-Manager Channel 3: Sync Manager 3 is used for process input data. It contains the Tx PDOs that are specified by the PDO assignment object 0x1C13 (hex.).

A 6.2.5 EtherCAT State Machine

The EtherCAT® state machine is implemented in each EtherCAT®. Directly after switching on the sensor, the state machine is in the "Initialization" state. In this state, the master has access to the DLL information register of the slave hardware. The mailbox is not yet initialized, i.e. communication with the application (sensor software) is not yet possible. During the transition to the pre-operational state, the Sync Manager channels are configured for the mailbox communication. In the "Pre-Operational" state, communication via the mailbox is possible, and it can access the object directory and its objects. In this state, no process data communication occurs. During the transition to the "Safe-Operational" state, the process-data mapping, the Sync Manager channel of the process inputs and the corresponding FMMU are configured by the master. Mailbox communication continues to be possible in the "Safe-Operational" state. The process data communication runs for the inputs. The outputs are in the "safe" state. In the "Operational" state, process data communication runs for the inputs as well as the outputs.

Fig. 89 EtherCAT State Machine

A 6.2.6 CANopen over EtherCAT

The application level communication protocol in EtherCAT is based on the communication profile CANopen DS 301 and is designated either as "CANopen over EtherCAT" or CoE. The protocol specifies the object directory in the sensor, as well as the communication objects for the exchange of process data and acyclic messages. The sensor uses the following message types:

- Process Data Object (PDO). The PDO is used for the cyclic I/O communication, therefore for process data.
- Service Data Object (SDO). The SDO is used for acyclic data transmission.

Details to the object directory, see A 6.3

A 6.2.7 Process Data PDO Mapping

Process Data Objects (PDOs) are used for the exchange of time-critical process data between master and slaves. Tx PDOs are used for the transmission of data from the slaves to the master (inputs), Rx PDOs are used to transmit data from the master to the slaves (outputs); not used in the confocalDT 24x1. The PDO mapping defines which application objects (measurement data) are transmitted into a PDO. The sensor has a Tx PDO for the measuring data. The following measurements are available as process data:

Designation	Description
Value counter	Measuring value counter (32 Bit)
Timestamp	Time stamp (32 Bit)
Sensor state	Error state
Number of edges	Number of edges
Number of pins	Number of pins
Number of gaps	Number of gaps
1 Statistic minimum value	1. Statistic value (minimum)
1 Statistic maximum value	1. Statistic value (maximum)
1 Statistic peak-peak value	1. Statistic value (Peak to Peak)
2 Statistic minimum value	2. Statistic value (minimum)
2 Statistic maximum value	2. Statistic value (maximum)
2 Statistic peak-peak value	2. Statistic value (peak to peak)
Position of the first high-low edge	Position of the first high-low edge
Position of the first low-high edge	Position of the first low-high edge
Diameter edge position A	Diameter / width, first low-high edge (A)
Diameter edge position B	Diameter / width, last high-low edge (B)
Diameter difference	Diameter / width
Diameter center axis	Diameter / width, center axis
Gap edge position A	Gap, position first high-low edge (A)
Gap edge position B	Gap, position following low-high edge (B)
Gap difference	Gap, gap difference
Gap center axis	Gap, center axis
Segment 1 edge position A	Segment 1, edge position A
Segment 1 edge position B	Segment 1, edge position B
Segment 1 difference	Segment 1, gap difference / width
Segment 1 center axis	Segment 1, center axis
Segment 2 edge position A Segment 8 center axes	Further measurements of segments 2 to 8

Fig. 90 Measurements of the optoCONTROL 2520

In EtherCAT the PDOs are transported in objects of the Sync Manager channel. The sensor uses the Sync Manager channel SM3 for input data (Tx data). The PDO assignments of the Sync Manager can only be changed in the "Pre-Operational" state. The mapping in the sensor is not carried out directly in the object 0x1A00, but rather by switching on and off individual measurements in the application object 0x21B0. The mapping result is available to the master after reloading the object directory.

Note: Subindex 0h of the object 0x1A00 contains the number of valid entries within the mapping report. This number also represents the number of application variables (parameters) that should be transmitted/received with the corresponding PDO. The subindices from 1h up to the number of objects contain information about the depicted application variables. The mapping values in the CANopen objects are coded in hexadecimal form.

The following table contains an example of the entry structure of the PDO mapping:

MSB						LSB
31	16	15	8	7		0
Index e.g (16 k	. 0x6065 oits)	Subinde	ex e.g. 0x02		Object length in bits, e.g. 20h = 32 bits	

Fig. 91 Entry structure of the PDO mapping, example

A 6.2.8 Service Data SDO Service

Service Data Objects (SDOs) are primarily used for the transmission of data that are not time critical, e.g. parameter values.

EtherCAT specifies the SDO services as well as the SDO information services:

- SDO services make possible the read/write access to entries in the CoE object directory of the device.
- SDO information services make it possible to read the object directory itself and to access the properties of the objects.

All parameters of the measuring device can be read or changed in this way, or measurements can be transmitted. A desired parameter is addressed via index and subindex within the object directory.

A 6.3 CoE – Object Directory

A 6.3.1 Characteristics

The CoE object directory (CANopen over EtherCAT) contains all the configuration data of the sensor. The objects in CoE object directory can be accessed using the SDO services. Each object is addressed using a 16-bit index.

A 6.3.2 Communication Specific Standard Objects (CiA DS-301)

A 6.3.2.1 Overview

Index (h)	Name	Description
1000	Device type	Device type
1001	Error register	Error register
1003	Error history	Predefined error field
1008	Device name	Manufacturer device name
1009	Hardware version	Hardware version
100A	Software version	Software version
1018	Identity	Device identification
1A00	Sample 0	TxPDO mapping
1A01	Sample 1	
		TxPDO Mapping (for oversampling)
1A18	Sample 24	
1C00	Sync. manager type	Sync. manager type
1C13	TxPDO assign	TxPDO assign
1C33	SM input parameter	Synchronous mode parameter (DC)

A 6.3.2.2 Object 1000h: Divice type

1000	VAR	Device type	0x00200000	Unsigned32	ro	
Provides informations about the used device profile and the device type						

Provides informations about the used device profile and the device type.

A 6.3.2.3 Object 1001h: Error register

1001 VAR Error register 0x00 Unsigned8 ro	ro
---	----

The error register contains generic informations about the kind of the internally adjacent device errors. The general error bit is set on each case.

Structure of error register

7	6	5	4	3	2	1	0
Manufacturer	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	General

A 6.3.2.4 Object 1003h: Error history

1003	RECORD	Error history			
Subindices					
0	VAR	Number of entries	1	Unsigned8	rw
1	VAR			Unsigned32	ro

The occurring device errors are registered here. The last error is saved in the error field. The entry under Sub-Index 0 contains the number of saved errors, by writing the value 0, the errors are eliminated.

A 6.3.2.5 Object 1008h: Device name

1008	VAR	Device name	IFC24x1	Visible String	ro
------	-----	-------------	---------	----------------	----

A 6.3.2.6 Object 1009h: Hardware version

		1009	VAR	Hardware version	V x.xxx	Visible String	ro
--	--	------	-----	------------------	---------	----------------	----

A 6.3.2.7 Object 100Ah: Software version

100A	VAR	Software version	V x.xxx	Visible String	ro

A 6.3.2.8 Object 1018h: Identity

Shows the device identification, contains amongst others the stock and the serial number of the sensor.

1018	RECORD	Identity						
Subindices								
0	VAR	Number of entries	4	Unsigned8	ro			
1	VAR	Vendor ID	0x0000607	Unsigned32	ro			
2	VAR	Product code	0x003EDE73	Unsigned32	ro			
3	VAR	Revision	0x00010000	Unsigned32	ro			
4	VAR	Serial number	0x009A4435	Unsigned32	ro			

The article number is deposit in the product code, the serial number of the sensor in serial number. Vendor ID: membership number of the EtherCAT® Technology Group (ETG) for MICRO-EPSILON Optronic GmbH.

For further details, see A 4.3.1.2

A 6.3.2.9 Object 1A00h: TxPDO mapping

1A00	RECORD	TxPDO Mapping			
Subindic	es	·			
0	VAR	Number of entries	43	Unsigned8	ro
1	VAR	Position of the first	0x6065:01, 323	Unsigned32	ro

A 6.3.2.10 Object 1A01 up to 1A18: TxPDO mapping

high-low edge

Contents are identical to object 1A00. The objects 1A01 - 1A18 are used for oversampling, see A 6.7.

A 6.3.2.11 Object 1C00h: Sync manager type

1C00	RECORD	Sync manager type			ro		
Subindices							
0	VAR	Number of entries	4	Unsigned8	ro		
1	VAR	Sync manager 0	0x01	Unsigned8	ro		
2	VAR	Sync manager 1	0x02	Unsigned8	ro		
3	VAR	Sync manager 2	0x03	Unsigned8	ro		
4	VAR	Sync manager 3	0x04	Unsigned8	ro		

A 6.3.2.12 Object 1C13h: TxPDO assign

1C13	RECORD	TxPDO assign			
Subindices					
0	VAR	Number of entries	1	Unsigned8	ro
1	VAR	Subindex 001	0x1A00	Unsigned16	ro

Further subindices possible (0x1A01, 0x1A02, ...) when oversampling, see A 6.7.

A 6.3.2.13 Object 1C33h: SM input manager

1C33	RECORD	SM input parameter			ro		
Subindices							
0	VAR	Number of entries	32	Unsigned8	ro		
1	VAR	Sync mode	0	Unsigned8	ro		
2	VAR	Cycle time	100000	Unsigned32	ro		
4	VAR	Sync modes supported	0x4005	Integer16	ro		
5	VAR	Minimum cycle time	1000000	Integer32	ro		
6	VAR	Calc and copy time	0	Integer32	ro		
8	VAR	Get cycle time	0	Integer16	rw		
11	VAR	SM event missed counter	0	Integer32	ro		
12	VAR	Cycle exceeded counter	0	Integer32	ro		
32	VAR	Sync error	FALSE	Bool	ro		

A 6.3.3 Manufacturer Specific Objects

A 6.3.3.1 Overview

Index (h)	Name	Description
2001	User level	Login, logout, change password
2005	Sensor info	Sensor informations (further)
2010	Setup	Load/save settings
2011	Correction	Low and high correction
2050	Advanced settings	Measurement unit
2101	Reset	Reset sensor
2105	Factory settings	Reset factory settings
2132	Laser power	Turning off laser light source
2153	Measuring distance	Distance between light source - receiver
2154	Measuring program	Measuring program
2165	Edges segment	Options for segments
2181	Averaging/error handling/statistics	Averaging/error handling/statistics and spike correction
21B0	Digital interfaces	Digital interfaces, data selection
21B1	Value edge high-low	Select measurement edge high-low
21B2	Value edge low-high	Select measurement edge low-high
21B3	Values diameter	Select measurement diameter / width
21B4	Values gap	Select measurement gap
21B5	Values segments	Select measurement segment
21C0	Ethernet	Ethernet parameter (IP address, subnet, gateway)
21D0	Analog output	Analog output
21E0	Zeroing/mastering	Zeroing/mastering
21F1	Switching outputs	Switching outputs
2410	Trigger mode	Trigger modes
2550	Threshold	Peak detection threshold
2711	Range of interest	Reduction of Region of Interest
603F	Sensor error	Error message of the sensor
6065	Position of the first low-high edge	
		ivieasurement values, depending on
6069	Segment 1 position A	measurement program and selection

A 6.3.3.2 Object 2001h: User level

2001	RECORD	User level						
Subindices								
0	VAR	Number of entries	7	Unsigned8	ro			
1	VAR	Actual user	x	Unsigned8	ro			
2	VAR	Login	*****	Visible string	wo			
3	VAR	Logout	FALSE	BOOL	rw			
4	VAR	Default user	x	Unsigned8	rw			
5	VAR	Password old	****	Visible string	wo			
6	VAR	Password new	****	Visible string	wo			
7	VAR	Password repeat	****	Visible string	wo			

Actual user, Default user:

- x = 0 - User

- x = 1 - Professional

For changing the password, the three password fields Old, New and Repeat must be described in the specified sequence. The maximum length of a password is 31 characters.

Further details can be found in the section Login, see Chap. 7.1.

2005	RECORD	Sensor Info			ro		
Subindices							
0	VAR	Number of entries	8	Unsigned8	ro		
1	VAR	Name	ODC 2520	Visible String	ro		
2	VAR	Measuring range	46 or 95	FLOAT32			
5	VAR	Serial No	XXXXXXXX	Visible String	ro		
6	VAR	Option No	XXX	Visible String	ro		
7	VAR	Calibration Date	XX.XX.XXXX	Visible String	ro		
8	VAR	Article No	XXXXXXX	Visible String	ro		
10	VAR	Measuring distance	20.000	FLOAT32	ro		

A 6.3.3.3 Object 2005h: Sensor informations

Further details can be found in the section sensor information, see A 4.3.1.2.

A 6.3.3.4 Object 2010h: Setup

2010	RECORD	Setup			ro			
Subindices								
0	VAR	Number of entries	5	Unsigned8	ro			
1	VAR	Setup number	0x0000	Unsigned8	rw			
2	VAR	Setup store	FALSE	BOOL	rw			
3	VAR	Setup read	FALSE	BOOL	rw			
4	VAR	Keep device settings	FALSE	BOOL	rw			

Further details can be found in the section Load/save settings in the sensor, see Chap. 6.6 and Parameter management, see A 4.5.6.

A 6.3.3.5 Object 2011h: Correction

2011	RECORD	Correction			ro	
Subindices						
0	VAR	Number of entries	3	Unsigned8	ro	
2	VAR	Light correction	FALSE	BOOL	rw	

Once light correction has been initiated via subindex 2, the read status changes to 10 in subindex 3. The value remains at 10 during the correction procedure. As soon as the correction is completed successfully, the value changes to 0. If an error occurs, the status changes to a value in the table, see A 4.6 (Warning and error messages). This value then corresponds to the error message in object 603F;1.

Check the sensor at the end of the light correction for possible errors with object 603Fh, see A 6.3.3.27.

Further details can be found in the section light source reference, see Chap. 6.3.1

A 6.3.3.6 Object 2050h: Advanced settings

2050	RECORD	Advanced settings				

Subindices

0	VAR	Number of entries	1	Unsigned8	ro
1	VAR	Measuring unit	FALSE	BOOL	rw

Selects the unit for the sensor parameterization: 0 - Millimeter, 1 - Inch

A 6.3.3.7 Object 2101h: Reset

2101 VAR Reset FALSE BOOL rw	
------------------------------	--

Further details can be found in the section reset, see 7.12.2.

A 6.3.3.8 Object 2105h: Factory settings

	2105	RECORD	Factory settings			ro	
	Subindizes						
Γ	0	VAR	Number of entries	3	Unsigned8	ro	
Γ	1	VAR	Factory settings	FALSE	BOOL	rw	
	2	VAR	Keep device settings	FALSE	BOOL	rw	
	3	VAR	Reset current setup	FALSE	BOOL	rw	

Further details can be found in the section Extras, see 7.12.1

A 6.3.3.9 Object 2132h: Laser power

		2132	VAR	Laser power	TRUE	BOOL	rw
--	--	------	-----	-------------	------	------	----

Turning the laser source on and off.

A 6.3.3.10 Object 2153h: Measuring distance

2153	RECORD	Measuring distance			ro	
Subindices						
0	VAR	Number of entries	2	Unsigned8	ro	
1	VAR	Distance in mm	х	FLOAT32	rw	
2	VAR	Measuring distances	х	Visible string	ro	

Measuring distances: shows all teached measuring distances, e.g. "20,0000mm".

Further details can be found in the section measurement distance, see Chap. 6.4.2, see A 4.4.1

A 6.3.3.11 Object 2154h: Measuring program

Determines the measurement program, search direction, measurement direction and the number of expected edges.

•	Set this before updating the PDO dictionary.

2154	RECORD	Measuring program		

Subindices

0	VAR	Number of entries	4	Unsigned8	ro
1	VAR	Measuring program		Unsigned8	rw
2	VAR	Search direction		Unsigned8	rw
3	VAR	Measuring direction		Unsigned8	rw
4	VAR	Expected edges		Unsigned8	rw

Measuring program:

- 0 Edge high-low
- 1 Edge low-high
- 2 Diameter
- 3 Gap
- 4 Segment

Search direction / Measuring direction:

- 0 Standard
- 1 Invers

Expected edges:

- 1-64

Further details can be found in the section measurement program, see Chap. 6.4.3, see A 4.4.2.

A 6.3.3.12 Object 2165h: Edges segment

2165 RECORD Edges segment			ro
---------------------------	--	--	----

Subindices

0	VAR	Number of entries	16	Unsigned8	ro
1	VAR	Segment 1 edge A		Unsigned8	rw
2	VAR	Segment 1 edge B		Unsigned8	rw
3	VAR	Segment 2 edge A		Unsigned8	rw
4	VAR	Segment 2 edge B		Unsigned8	rw
5	VAR	Segment 3 edge A		Unsigned8	rw
6	VAR	Segment 3 edge B		Unsigned8	rw
7	VAR	Segment 4 edge A		Unsigned8	rw
8	VAR	Segment 4 edge B		Unsigned8	rw
9	VAR	Segment 5 edge A		Unsigned8	rw
10	VAR	Segment 5 edge B		Unsigned8	rw
11	VAR	Segment 6 edge A		Unsigned8	rw
12	VAR	Segment 6 edge B		Unsigned8	rw
13	VAR	Segment 7 edge A		Unsigned8	rw
14	VAR	Segment 7 edge B		Unsigned8	rw
15	VAR	Segment 8 edge A		Unsigned8	rw
16	VAR	Segment 8 edge B		Unsigned8	rw

Further details can be found in the section segment, see Chap. 7.2, see A 4.4.2.

A 6.3.3.13 Object 2181h: Averaging, error processing and statistics

2181 RECORD Averaging/error handling/statistics

Subindices

0	VAR	Number of entries	17	Unsigned8	ro
1	VAR	Measured value averaging type	х	Unsigned8	rw
2	VAR	Number of values for moving	х	Unsigned32	rw
		average			
3	VAR	Number of values for median	х	Unsigned32	rw
4	VAR	Number of values for recursive	х	Unsigned32	rw
		average			
5	VAR	Statistic depth	х	Unsigned16	rw
6	VAR	Reset statistic	FALSE	BOOL	rw
7	VAR	Error handling	х	Unsigned8	rw
8	VAR	Number of held values	х	Unsigned16	rw
10	VAR	Signal for statistics 1	Х	Unsigned8	rw
12	VAR	Use spike correction	FALSE	BOOL	rw
13	VAR	Spike correction evaluation lenght	х	Unsigned8	rw
14	VAR	Spike correction range	X.X	FLOAT32	rw
15	VAR	Spike correction count	х	Unsigned8	rw
17	VAR	Signal for statistics 2	Х	Unsigned8	rw

Measured value averaging type:

- 0 - No averaging

- 1 Moving average (Number of values moving average: 2, 4, 8, 16, 32, 64, 128)
- 2 Recursive average (Number of values recursive average: 2 up to 32768)
- 3 Median (Number of values median: 3, 5, 7 and 9)

Statistic depth:

- **-** 2, 4, 8, 16 ... 8192;
- 0 = Infinite

Error handling:

- 0 Output of error value
- 1 Hold last valid value for a number of measurement values (Number of held values: 1 … 1024)
- 2 Hold last valid value infinitely

Signal for statistics: Measurement, for which the statistics 1 or statistics 2 is calculated.

Further details can be found in the section averaging, error processing, see Chap. 7.3, see A 4.4.3.

ro

X value	Measurement identifier	Measurement program				
		Edge HL	Edge LH	Diameter	Gap	Segment
0	Segment 1 Edge A					Х
1	Segment 1 Edge B					х
2	Segment 1 Edge difference					х
3	Segment 1 Edge center axes					х
4	Segment 2 Edge A					х
5	Segment 2 Edge B					х
6	Segment 2 Edge difference					Х
7	Segment 2 Edge center axes					Х
8	Segment 3 Edge A					х
9	Segment 3 Edge B					х
10	Segment 3 Edge difference					х
11	Segment 3 Edge center axes					х
12	Segment 4 Edge A					х
13	Segment 4 Edge B					х
14	Segment 4 Edge difference					х
15	Segment 4 Edge center axes					х
16	Segment 5 Edge A					х
17	Segment 5 Edge B					х
18	Segment 5 Edge difference					х
19	Segment 5 Edge center axes					х
20	Segment 6 Edge A					х
21	Segment 6 Edge B					х
22	Segment 6 Edge difference					х
23	Segment 6 Edge center axes					Х
24	Segment 7 Edge A					х
25	Segment 7 Edge B					Х
26	Segment 7 Edge difference					Х
27	Segment 7 Edge center axes					Х
28	Segment 8 Edge A					х
29	Segment 8 Edge B					Х
30	Segment 8 Edge difference					Х
31	Segment 8 Edge center axes					Х
32	Edge High Low	х				
33	Edge Low High		Х			
34	Diameter Edge A			х		
35	Diameter Edge B			Х		
36	Diameter Difference			х		
37	Diameter Center axes			х		
38	Gap Edge A				х	
39	Gap Edge B				х	
40	Gap Difference				х	
41	Gap Center axes				x	

Fig. 92 Assignment X value to the measurement identifier

The data selection for statistics depends on the selected measurement program (object 2154h).

Use spike correction:

- 0 without spike correction
- 1 with spike correction
- Spike correction evaluation length: Number of evaluated values (1 ... 10) Spike correction range: max. tolerance range

- in 46 mm (0.0000000 ... 46.000000)
- in 95 mm (0.0000000 ... 95.0000000)

Spike correction count: Number of corrected values (1 ... 100)

A 6.3.3.14 Object 21B0h: Digital interfaces

Digital interfaces, selection of transmitted data (measurement values).

21B0	RECORD	Digital interfaces			ro			
Subindi	Subindices							
0	VAR	Number of entries	16	Unsigned8	ro			
1	VAR	Output device	5	Unsigned8	rw			
2	VAR	RS422 baud rate	x	Unsigned32	rw			
3	VAR	Ethernet/EtherCAT	TRUE	BOOL	rw			
5	VAR	Value counter	FALSE	BOOL	rw			
6	VAR	Timestamp	FALSE	BOOL	rw			
7	VAR	Sensor state	FALSE	BOOL	rw			
8	VAR	Number of edges	FALSE	BOOL	rw			
9	VAR	Number of pins	FALSE	BOOL	rw			
10	VAR	Number of gaps	FALSE	BOOL	rw			
11	VAR	1 Statistik min	FALSE	BOOL	rw			
12	VAR	1 Statistik max	FALSE	BOOL	rw			
13	VAR	1 Statistik P2P	FALSE	BOOL	rw			
14	VAR	2 Statistik min	FALSE	BOOL	rw			
15	VAR	2 Statistik max	FALSE	BOOL	rw			

Output device:

16

- 0 – No output channel

VAR

- 1 RS422
- 5 EtherCAT

RS422 baud rate: 9600, 115200, 230400, 460800, 691200, 921600, 1500000, 2000000, 3500000, 4000000

FALSE

BOOL

rw

Ethercat-Ethernet: (Change of interface)

- 0 – Ethernet (works only from restarting, previously setup store)

2 Statistik P2P

- 1 – EtherCAT

Save the settings with the object 2010:02 (Setup store).

Then restart the sensor to activate the Ethernet interface.

Subindices 5 ... 16: Data selection for the PDO mapping

Statistics: Selection of the issued statistics data (subindices 11 ... 16), which were selected in the object 2181h. Further details can be found in the section statistics, see Chap. 7.3.6.

Further details for the subindices can be found in the section select data, see Chap. 7.5.3.

A 6.3.3.15 Object 21B1h: Value edge high-low

Select measurements to be output in the measurement program edge high-low.

21B1 RECORD Value edge high- low		ro
-------------------------------------	--	----

Subindices

0	VAR	Number of entries	1	Unsigned8	ro
1	VAR	Position of the first high-low edge	FALSE	BOOL	rw

• The object is active in the measurement program edge high-low only, see A 6.3.3.12

A 6.3.3.16 Object 21B2h: Value edge low-high

Select measurements to be output in the measurement program edge low-high.

21B2	RECORD	Value edge low-high		ro

Subindices

0	VAR	Number of entries	1	Unsigned8	ro
1	VAR	Position of the first low- high edge	FALSE	BOOL	rw

The object is active in the measurement program edge low-high only, see A
 6.3.3.12.

A 6.3.3.17 Object 21B3h: Value diameter

Select measurements to be output in the measurement program diameter.

 $\stackrel{\bullet}{l}$ When switching from Ethernet to EtherCAT, it may not be possible to adopt all parameters. Missing parameters can be set in TwinCAT.

21B3	RECORD	Value diameter		ro

Subindices

0	VAR	Number of entries	4	Unsigned8	ro
1	VAR	Diameter edge position A	FALSE	BOOL	rw
2	VAR	Diameter edge position B	FALSE	BOOL	rw
3	VAR	Diameter difference	FALSE	BOOL	rw
4	VAR	Diameter center axes	FALSE	BOOL	rw

The object is active in the measurement program diameter only, see A 6.3.3.12.

A 6.3.3.18 Object 21B4h: Value gap

Select measurements to be output in the measurement program gap.

21B4	RECORD	Value gap		ro

Subindices

0	VAR	Number of entries	4	Unsigned8	ro
1	VAR	Gap edge position A	FALSE	BOOL	rw
2	VAR	Gap edge position B	FALSE	BOOL	rw
3	VAR	Gap difference	FALSE	BOOL	rw
4	VAR	Gap center axes	FALSE	BOOL	rw

The object is active in the measurement program edge high-low only, see A

1 6.3.3.12.

A 6.3.3.19 Object 21B5h: Value segment

Select measurements to be output in the measurement program segment.

21B5RECORDValue segmentroSubindices0VARNumber of entries32Unsigned8ro1VARSegment 1 edge position AFALSEBOOLrw2VARSegment 1 differenceFALSEBOOLrw3VARSegment 1 center axesFALSEBOOLrw4VARSegment 1 center axesFALSEBOOLrw5VARSegment 2 edge position AFALSEBOOLrw6VARSegment 2 edge position BFALSEBOOLrw7VARSegment 2 edge position AFALSEBOOLrw8VARSegment 3 edge position AFALSEBOOLrw9VARSegment 3 edge position AFALSEBOOLrw10VARSegment 3 edge position AFALSEBOOLrw11VARSegment 3 center axesFALSEBOOLrw12VARSegment 4 edge position AFALSEBOOLrw13VARSegment 4 edge position AFALSEBOOLrw14VARSegment 4 edge position AFALSEBOOLrw15VARSegment 5 edge position AFALSEBOOLrw16VARSegment 5 edge position AFALSEBOOLrw17VARSegment 6 edge position AFALSEBOOLrw18VARSegment 6 edge position AFALSEBOOLrw </th <th></th> <th></th> <th>· · · · · · · · · · · · · · · · · · ·</th> <th></th> <th></th> <th></th>			· · · · · · · · · · · · · · · · · · ·						
Subindices 0 VAR Number of entries 32 Unsigned8 ro 1 VAR Segment 1 edge position A FALSE BOOL rw 2 VAR Segment 1 edge position B FALSE BOOL rw 3 VAR Segment 1 enter axes FALSE BOOL rw 4 VAR Segment 1 enter axes FALSE BOOL rw 5 VAR Segment 2 edge position A FALSE BOOL rw 6 VAR Segment 2 edge position A FALSE BOOL rw 7 VAR Segment 3 edge position A FALSE BOOL rw 9 VAR Segment 3 edge position A FALSE BOOL rw 10 VAR Segment 3 edge position A FALSE BOOL rw 11 VAR Segment 4 edge position A FALSE BOOL rw 12 VAR Segment 4 edge position A FALSE BOOL rw 13 VAR Segment 4 edge position A FALSE BOOL rw </td <td>21B5</td> <td>RECORD</td> <td>Value segment</td> <td></td> <td></td> <td>ro</td>	21B5	RECORD	Value segment			ro			
0 VAR Number of entries 32 Unsigned8 ro 1 VAR Segment 1 edge position A FALSE BOOL rw 2 VAR Segment 1 edge position B FALSE BOOL rw 3 VAR Segment 1 edge position B FALSE BOOL rw 4 VAR Segment 1 edge position A FALSE BOOL rw 5 VAR Segment 2 edge position A FALSE BOOL rw 6 VAR Segment 2 edge position B FALSE BOOL rw 7 VAR Segment 2 edge position A FALSE BOOL rw 8 VAR Segment 2 edge position A FALSE BOOL rw 9 VAR Segment 3 edge position A FALSE BOOL rw 10 VAR Segment 3 edge position A FALSE BOOL rw 11 VAR Segment 3 edge position A FALSE BOOL rw 12 VAR Segment 4 edge position A FALSE BOOL rw 14<	Subindices								
1VARSegment 1 edge position AFALSEBOOLrw2VARSegment 1 edge position BFALSEBOOLrw3VARSegment 1 edge position BFALSEBOOLrw4VARSegment 1 enter axesFALSEBOOLrw5VARSegment 2 edge position AFALSEBOOLrw6VARSegment 2 edge position BFALSEBOOLrw7VARSegment 2 edge position AFALSEBOOLrw8VARSegment 3 edge position AFALSEBOOLrw9VARSegment 3 edge position AFALSEBOOLrw10VARSegment 3 edge position BFALSEBOOLrw11VARSegment 3 edge position AFALSEBOOLrw12VARSegment 4 edge position AFALSEBOOLrw13VARSegment 4 edge position AFALSEBOOLrw14VARSegment 4 edge position BFALSEBOOLrw15VARSegment 4 edge position AFALSEBOOLrw16VARSegment 5 edge position AFALSEBOOLrw17VARSegment 5 edge position AFALSEBOOLrw18VARSegment 5 edge position AFALSEBOOLrw20VARSegment 6 edge position AFALSEBOOLrw21VARSegment 6 edge position AFALSE<	0	VAR	Number of entries	32	Unsigned8	ro			
2VARSegment 1 edge position BFALSEBOOLrw3VARSegment 1 differenceFALSEBOOLrw4VARSegment 1 center axesFALSEBOOLrw5VARSegment 2 edge position AFALSEBOOLrw6VARSegment 2 edge position BFALSEBOOLrw7VARSegment 2 differenceFALSEBOOLrw8VARSegment 2 center axesFALSEBOOLrw9VARSegment 3 edge position AFALSEBOOLrw10VARSegment 3 edge position AFALSEBOOLrw11VARSegment 3 edge position AFALSEBOOLrw12VARSegment 3 edge position AFALSEBOOLrw13VARSegment 3 edge position AFALSEBOOLrw14VARSegment 4 edge position AFALSEBOOLrw15VARSegment 4 edge position AFALSEBOOLrw16VARSegment 5 edge position AFALSEBOOLrw17VARSegment 5 edge position AFALSEBOOLrw18VARSegment 6 edge position AFALSEBOOLrw20VARSegment 6 edge position AFALSEBOOLrw21VARSegment 6 edge position AFALSEBOOLrw23VARSegment 6 edge position AFALSEBOOL	1	VAR	Segment 1 edge position A	FALSE	BOOL	rw			
3VARSegment 1 differenceFALSEBOOLrw4VARSegment 1 center axesFALSEBOOLrw5VARSegment 2 edge position AFALSEBOOLrw6VARSegment 2 edge position BFALSEBOOLrw7VARSegment 2 differenceFALSEBOOLrw8VARSegment 2 center axesFALSEBOOLrw9VARSegment 3 edge position AFALSEBOOLrw10VARSegment 3 edge position BFALSEBOOLrw11VARSegment 3 edge position AFALSEBOOLrw12VARSegment 3 center axesFALSEBOOLrw13VARSegment 4 edge position AFALSEBOOLrw14VARSegment 4 edge position BFALSEBOOLrw15VARSegment 4 edge position AFALSEBOOLrw16VARSegment 5 edge position AFALSEBOOLrw17VARSegment 5 edge position AFALSEBOOLrw18VARSegment 5 center axesFALSEBOOLrw20VARSegment 6 edge position AFALSEBOOLrw21VARSegment 6 edge position BFALSEBOOLrw22VARSegment 7 edge position AFALSEBOOLrw21VARSegment 6 edge position AFALSEBOOLrw<	2	VAR	Segment 1 edge position B	FALSE	BOOL	rw			
4VARSegment 1 center axesFALSEBOOLrw5VARSegment 2 edge position AFALSEBOOLrw6VARSegment 2 edge position BFALSEBOOLrw7VARSegment 2 differenceFALSEBOOLrw8VARSegment 2 center axesFALSEBOOLrw9VARSegment 3 edge position AFALSEBOOLrw10VARSegment 3 edge position BFALSEBOOLrw11VARSegment 3 edge position AFALSEBOOLrw12VARSegment 3 center axesFALSEBOOLrw13VARSegment 4 edge position AFALSEBOOLrw14VARSegment 4 edge position BFALSEBOOLrw15VARSegment 4 edge position BFALSEBOOLrw16VARSegment 5 edge position AFALSEBOOLrw17VARSegment 5 edge position AFALSEBOOLrw18VARSegment 5 edge position AFALSEBOOLrw20VARSegment 6 edge position AFALSEBOOLrw21VARSegment 6 edge position AFALSEBOOLrw22VARSegment 7 edge position BFALSEBOOLrw23VARSegment 6 edge position BFALSEBOOLrw24VARSegment 7 edge position BFALSEBOOL </td <td>3</td> <td>VAR</td> <td>Segment 1 difference</td> <td>FALSE</td> <td>BOOL</td> <td>rw</td>	3	VAR	Segment 1 difference	FALSE	BOOL	rw			
5VARSegment 2 edge position AFALSEBOOLrw6VARSegment 2 edge position BFALSEBOOLrw7VARSegment 2 cifferenceFALSEBOOLrw8VARSegment 2 center axesFALSEBOOLrw9VARSegment 3 edge position AFALSEBOOLrw10VARSegment 3 edge position BFALSEBOOLrw11VARSegment 3 edge position BFALSEBOOLrw12VARSegment 3 center axesFALSEBOOLrw13VARSegment 4 edge position AFALSEBOOLrw14VARSegment 4 edge position BFALSEBOOLrw15VARSegment 4 center axesFALSEBOOLrw16VARSegment 5 edge position AFALSEBOOLrw17VARSegment 5 edge position BFALSEBOOLrw18VARSegment 5 edge position AFALSEBOOLrw20VARSegment 6 edge position AFALSEBOOLrw21VARSegment 6 edge position AFALSEBOOLrw22VARSegment 7 edge position AFALSEBOOLrw23VARSegment 6 edge position AFALSEBOOLrw24VARSegment 7 edge position AFALSEBOOLrw25VARSegment 7 edge position AFALSEBOOL<	4	VAR	Segment 1 center axes	FALSE	BOOL	rw			
6VARSegment 2 edge position BFALSEBOOLrw7VARSegment 2 differenceFALSEBOOLrw8VARSegment 2 center axesFALSEBOOLrw9VARSegment 3 edge position AFALSEBOOLrw10VARSegment 3 edge position BFALSEBOOLrw11VARSegment 3 edge position BFALSEBOOLrw11VARSegment 3 center axesFALSEBOOLrw12VARSegment 3 center axesFALSEBOOLrw13VARSegment 4 edge position AFALSEBOOLrw14VARSegment 4 edge position BFALSEBOOLrw15VARSegment 4 edge position AFALSEBOOLrw16VARSegment 5 edge position AFALSEBOOLrw17VARSegment 5 edge position BFALSEBOOLrw18VARSegment 5 edge position BFALSEBOOLrw20VARSegment 6 edge position AFALSEBOOLrw21VARSegment 6 edge position BFALSEBOOLrw22VARSegment 6 edge position AFALSEBOOLrw23VARSegment 7 edge position AFALSEBOOLrw24VARSegment 7 edge position BFALSEBOOLrw25VARSegment 7 edge position AFALSEBOOL	5	VAR	Segment 2 edge position A	FALSE	BOOL	rw			
7VARSegment 2 differenceFALSEBOOLrw8VARSegment 2 center axesFALSEBOOLrw9VARSegment 3 edge position AFALSEBOOLrw10VARSegment 3 edge position BFALSEBOOLrw11VARSegment 3 edge position BFALSEBOOLrw12VARSegment 3 center axesFALSEBOOLrw13VARSegment 4 edge position AFALSEBOOLrw14VARSegment 4 edge position BFALSEBOOLrw15VARSegment 4 edge position BFALSEBOOLrw16VARSegment 4 edge position AFALSEBOOLrw17VARSegment 5 edge position AFALSEBOOLrw18VARSegment 5 edge position AFALSEBOOLrw19VARSegment 5 center axesFALSEBOOLrw20VARSegment 6 edge position AFALSEBOOLrw21VARSegment 6 edge position AFALSEBOOLrw22VARSegment 6 edge position AFALSEBOOLrw23VARSegment 6 edge position AFALSEBOOLrw24VARSegment 6 edge position AFALSEBOOLrw25VARSegment 7 edge position AFALSEBOOLrw26VARSegment 7 edge position AFALSEBOO	6	VAR	Segment 2 edge position B	FALSE	BOOL	rw			
8VARSegment 2 center axesFALSEBOOLrw9VARSegment 3 edge position AFALSEBOOLrw10VARSegment 3 edge position BFALSEBOOLrw11VARSegment 3 edge position BFALSEBOOLrw12VARSegment 3 center axesFALSEBOOLrw13VARSegment 3 center axesFALSEBOOLrw14VARSegment 4 edge position AFALSEBOOLrw15VARSegment 4 edge position BFALSEBOOLrw16VARSegment 4 center axesFALSEBOOLrw17VARSegment 5 edge position AFALSEBOOLrw18VARSegment 5 edge position BFALSEBOOLrw19VARSegment 5 center axesFALSEBOOLrw20VARSegment 6 edge position AFALSEBOOLrw21VARSegment 6 edge position BFALSEBOOLrw23VARSegment 6 edge position AFALSEBOOLrw24VARSegment 7 edge position AFALSEBOOLrw25VARSegment 7 edge position AFALSEBOOLrw26VARSegment 7 edge position AFALSEBOOLrw27VARSegment 7 edge position AFALSEBOOLrw28VARSegment 7 edge position BFALSEBOOL<	7	VAR	Segment 2 difference	FALSE	BOOL	rw			
9VARSegment 3 edge position AFALSEBOOLrw10VARSegment 3 edge position BFALSEBOOLrw11VARSegment 3 differenceFALSEBOOLrw12VARSegment 3 center axesFALSEBOOLrw13VARSegment 4 edge position AFALSEBOOLrw14VARSegment 4 edge position BFALSEBOOLrw15VARSegment 4 edge position BFALSEBOOLrw16VARSegment 4 center axesFALSEBOOLrw17VARSegment 5 edge position AFALSEBOOLrw18VARSegment 5 edge position BFALSEBOOLrw19VARSegment 5 center axesFALSEBOOLrw20VARSegment 6 edge position AFALSEBOOLrw21VARSegment 6 edge position BFALSEBOOLrw22VARSegment 6 edge position AFALSEBOOLrw23VARSegment 6 edge position BFALSEBOOLrw24VARSegment 7 edge position AFALSEBOOLrw25VARSegment 7 edge position BFALSEBOOLrw26VARSegment 7 edge position BFALSEBOOLrw27VARSegment 7 center axesFALSEBOOLrw28VARSegment 8 edge position BFALSEBOOL<	8	VAR	Segment 2 center axes	FALSE	BOOL	rw			
10VARSegment 3 edge position BFALSEBOOLrw11VARSegment 3 differenceFALSEBOOLrw12VARSegment 3 center axesFALSEBOOLrw13VARSegment 4 edge position AFALSEBOOLrw14VARSegment 4 edge position BFALSEBOOLrw15VARSegment 4 edge position BFALSEBOOLrw16VARSegment 4 center axesFALSEBOOLrw17VARSegment 5 edge position AFALSEBOOLrw18VARSegment 5 edge position BFALSEBOOLrw19VARSegment 5 center axesFALSEBOOLrw20VARSegment 6 edge position AFALSEBOOLrw21VARSegment 6 edge position AFALSEBOOLrw22VARSegment 6 edge position AFALSEBOOLrw23VARSegment 6 edge position BFALSEBOOLrw24VARSegment 7 edge position AFALSEBOOLrw25VARSegment 7 edge position BFALSEBOOLrw26VARSegment 7 edge position AFALSEBOOLrw27VARSegment 7 center axesFALSEBOOLrw28VARSegment 7 edge position AFALSEBOOLrw29VARSegment 8 edge position BFALSEBOOL	9	VAR	Segment 3 edge position A	FALSE	BOOL	rw			
11VARSegment 3 differenceFALSEBOOLrw12VARSegment 3 center axesFALSEBOOLrw13VARSegment 4 edge position AFALSEBOOLrw14VARSegment 4 edge position BFALSEBOOLrw15VARSegment 4 edge position AFALSEBOOLrw16VARSegment 4 center axesFALSEBOOLrw17VARSegment 5 edge position AFALSEBOOLrw18VARSegment 5 edge position BFALSEBOOLrw19VARSegment 5 center axesFALSEBOOLrw20VARSegment 6 edge position AFALSEBOOLrw21VARSegment 6 edge position AFALSEBOOLrw22VARSegment 6 edge position AFALSEBOOLrw23VARSegment 6 edge position AFALSEBOOLrw24VARSegment 7 edge position AFALSEBOOLrw25VARSegment 7 edge position AFALSEBOOLrw26VARSegment 7 differenceFALSEBOOLrw27VARSegment 7 center axesFALSEBOOLrw28VARSegment 8 edge position AFALSEBOOLrw30VARSegment 8 edge position BFALSEBOOLrw31VARSegment 8 edifferenceFALSEBOOL	10	VAR	Segment 3 edge position B	FALSE	BOOL	rw			
12VARSegment 3 center axesFALSEBOOLrw13VARSegment 4 edge position AFALSEBOOLrw14VARSegment 4 edge position BFALSEBOOLrw15VARSegment 4 differenceFALSEBOOLrw16VARSegment 4 center axesFALSEBOOLrw17VARSegment 5 edge position AFALSEBOOLrw18VARSegment 5 edge position BFALSEBOOLrw19VARSegment 5 center axesFALSEBOOLrw20VARSegment 6 edge position AFALSEBOOLrw21VARSegment 6 edge position AFALSEBOOLrw22VARSegment 6 edge position AFALSEBOOLrw23VARSegment 6 edge position AFALSEBOOLrw24VARSegment 7 edge position AFALSEBOOLrw25VARSegment 7 edge position BFALSEBOOLrw26VARSegment 7 edge position BFALSEBOOLrw27VARSegment 7 center axesFALSEBOOLrw28VARSegment 8 edge position AFALSEBOOLrw30VARSegment 8 edge position BFALSEBOOLrw31VARSegment 8 differenceFALSEBOOLrw32VARSegment 8 center axesFALSEBOOL	11	VAR	Segment 3 difference	FALSE	BOOL	rw			
13VARSegment 4 edge position AFALSEBOOLrw14VARSegment 4 edge position BFALSEBOOLrw15VARSegment 4 differenceFALSEBOOLrw16VARSegment 4 center axesFALSEBOOLrw17VARSegment 5 edge position AFALSEBOOLrw18VARSegment 5 edge position BFALSEBOOLrw19VARSegment 5 center axesFALSEBOOLrw20VARSegment 6 edge position AFALSEBOOLrw21VARSegment 6 edge position BFALSEBOOLrw23VARSegment 6 edge position BFALSEBOOLrw24VARSegment 7 edge position AFALSEBOOLrw25VARSegment 7 edge position BFALSEBOOLrw26VARSegment 7 edge position BFALSEBOOLrw27VARSegment 7 center axesFALSEBOOLrw28VARSegment 7 center axesFALSEBOOLrw29VARSegment 8 edge position AFALSEBOOLrw30VARSegment 8 edge position BFALSEBOOLrw31VARSegment 8 differenceFALSEBOOLrw32VARSegment 8 center axesFALSEBOOLrw	12	VAR	Segment 3 center axes	FALSE	BOOL	rw			
14VARSegment 4 edge position BFALSEBOOLrw15VARSegment 4 differenceFALSEBOOLrw16VARSegment 4 center axesFALSEBOOLrw17VARSegment 5 edge position AFALSEBOOLrw18VARSegment 5 edge position BFALSEBOOLrw19VARSegment 5 differenceFALSEBOOLrw20VARSegment 5 center axesFALSEBOOLrw21VARSegment 6 edge position AFALSEBOOLrw22VARSegment 6 edge position BFALSEBOOLrw23VARSegment 6 edge position BFALSEBOOLrw24VARSegment 7 edge position AFALSEBOOLrw25VARSegment 7 edge position BFALSEBOOLrw26VARSegment 7 edge position BFALSEBOOLrw27VARSegment 7 edge position AFALSEBOOLrw28VARSegment 7 center axesFALSEBOOLrw29VARSegment 8 edge position AFALSEBOOLrw30VARSegment 8 edge position BFALSEBOOLrw31VARSegment 8 differenceFALSEBOOLrw32VARSegment 8 center axesFALSEBOOLrw	13	VAR	Segment 4 edge position A	FALSE	BOOL	rw			
15VARSegment 4 differenceFALSEBOOLrw16VARSegment 4 center axesFALSEBOOLrw17VARSegment 5 edge position AFALSEBOOLrw18VARSegment 5 edge position BFALSEBOOLrw19VARSegment 5 differenceFALSEBOOLrw20VARSegment 5 center axesFALSEBOOLrw21VARSegment 6 edge position AFALSEBOOLrw22VARSegment 6 edge position BFALSEBOOLrw23VARSegment 6 differenceFALSEBOOLrw24VARSegment 7 edge position AFALSEBOOLrw25VARSegment 7 edge position BFALSEBOOLrw26VARSegment 7 edge position BFALSEBOOLrw27VARSegment 7 center axesFALSEBOOLrw28VARSegment 7 center axesFALSEBOOLrw30VARSegment 8 edge position AFALSEBOOLrw31VARSegment 8 differenceFALSEBOOLrw32VARSegment 8 center axesFALSEBOOLrw	14	VAR	Segment 4 edge position B	FALSE	BOOL	rw			
16VARSegment 4 center axesFALSEBOOLrw17VARSegment 5 edge position AFALSEBOOLrw18VARSegment 5 edge position BFALSEBOOLrw19VARSegment 5 differenceFALSEBOOLrw20VARSegment 5 center axesFALSEBOOLrw21VARSegment 6 edge position AFALSEBOOLrw22VARSegment 6 edge position BFALSEBOOLrw23VARSegment 6 differenceFALSEBOOLrw24VARSegment 6 center axesFALSEBOOLrw25VARSegment 7 edge position AFALSEBOOLrw26VARSegment 7 edge position BFALSEBOOLrw27VARSegment 7 center axesFALSEBOOLrw28VARSegment 7 center axesFALSEBOOLrw30VARSegment 8 edge position BFALSEBOOLrw31VARSegment 8 differenceFALSEBOOLrw32VARSegment 8 center axesFALSEBOOLrw	15	VAR	Segment 4 difference	FALSE	BOOL	rw			
17VARSegment 5 edge position AFALSEBOOLrw18VARSegment 5 edge position BFALSEBOOLrw19VARSegment 5 differenceFALSEBOOLrw20VARSegment 5 center axesFALSEBOOLrw21VARSegment 6 edge position AFALSEBOOLrw22VARSegment 6 edge position BFALSEBOOLrw23VARSegment 6 edge position BFALSEBOOLrw24VARSegment 6 center axesFALSEBOOLrw25VARSegment 7 edge position AFALSEBOOLrw26VARSegment 7 edge position BFALSEBOOLrw27VARSegment 7 edge position AFALSEBOOLrw28VARSegment 7 center axesFALSEBOOLrw29VARSegment 8 edge position AFALSEBOOLrw30VARSegment 8 edge position BFALSEBOOLrw31VARSegment 8 differenceFALSEBOOLrw32VARSegment 8 center axesFALSEBOOLrw	16	VAR	Segment 4 center axes	FALSE	BOOL	rw			
18VARSegment 5 edge position BFALSEBOOLrw19VARSegment 5 differenceFALSEBOOLrw20VARSegment 5 center axesFALSEBOOLrw21VARSegment 6 edge position AFALSEBOOLrw22VARSegment 6 edge position BFALSEBOOLrw23VARSegment 6 differenceFALSEBOOLrw24VARSegment 6 center axesFALSEBOOLrw25VARSegment 7 edge position AFALSEBOOLrw26VARSegment 7 edge position BFALSEBOOLrw27VARSegment 7 differenceFALSEBOOLrw28VARSegment 7 center axesFALSEBOOLrw29VARSegment 8 edge position AFALSEBOOLrw30VARSegment 8 edge position BFALSEBOOLrw31VARSegment 8 differenceFALSEBOOLrw32VARSegment 8 center axesFALSEBOOLrw	17	VAR	Segment 5 edge position A	FALSE	BOOL	rw			
19VARSegment 5 differenceFALSEBOOLrw20VARSegment 5 center axesFALSEBOOLrw21VARSegment 6 edge position AFALSEBOOLrw22VARSegment 6 edge position BFALSEBOOLrw23VARSegment 6 differenceFALSEBOOLrw24VARSegment 6 center axesFALSEBOOLrw25VARSegment 7 edge position AFALSEBOOLrw26VARSegment 7 edge position BFALSEBOOLrw27VARSegment 7 center axesFALSEBOOLrw28VARSegment 7 center axesFALSEBOOLrw29VARSegment 8 edge position AFALSEBOOLrw30VARSegment 8 edge position BFALSEBOOLrw31VARSegment 8 differenceFALSEBOOLrw32VARSegment 8 center axesFALSEBOOLrw	18	VAR	Segment 5 edge position B	FALSE	BOOL	rw			
20VARSegment 5 center axesFALSEBOOLrw21VARSegment 6 edge position AFALSEBOOLrw22VARSegment 6 edge position BFALSEBOOLrw23VARSegment 6 differenceFALSEBOOLrw24VARSegment 6 center axesFALSEBOOLrw25VARSegment 7 edge position AFALSEBOOLrw26VARSegment 7 edge position BFALSEBOOLrw27VARSegment 7 differenceFALSEBOOLrw28VARSegment 7 center axesFALSEBOOLrw29VARSegment 8 edge position AFALSEBOOLrw30VARSegment 8 edge position BFALSEBOOLrw31VARSegment 8 differenceFALSEBOOLrw32VARSegment 8 center axesFALSEBOOLrw	19	VAR	Segment 5 difference	FALSE	BOOL	rw			
21VARSegment 6 edge position AFALSEBOOLrw22VARSegment 6 edge position BFALSEBOOLrw23VARSegment 6 differenceFALSEBOOLrw24VARSegment 6 center axesFALSEBOOLrw25VARSegment 7 edge position AFALSEBOOLrw26VARSegment 7 edge position BFALSEBOOLrw27VARSegment 7 differenceFALSEBOOLrw28VARSegment 7 center axesFALSEBOOLrw29VARSegment 8 edge position AFALSEBOOLrw30VARSegment 8 edge position BFALSEBOOLrw31VARSegment 8 differenceFALSEBOOLrw32VARSegment 8 center axesFALSEBOOLrw	20	VAR	Segment 5 center axes	FALSE	BOOL	rw			
22VARSegment 6 edge position BFALSEBOOLrw23VARSegment 6 differenceFALSEBOOLrw24VARSegment 6 center axesFALSEBOOLrw25VARSegment 7 edge position AFALSEBOOLrw26VARSegment 7 edge position BFALSEBOOLrw27VARSegment 7 differenceFALSEBOOLrw28VARSegment 7 center axesFALSEBOOLrw29VARSegment 8 edge position AFALSEBOOLrw30VARSegment 8 edge position BFALSEBOOLrw31VARSegment 8 differenceFALSEBOOLrw32VARSegment 8 center axesFALSEBOOLrw	21	VAR	Segment 6 edge position A	FALSE	BOOL	rw			
23VARSegment 6 differenceFALSEBOOLrw24VARSegment 6 center axesFALSEBOOLrw25VARSegment 7 edge position AFALSEBOOLrw26VARSegment 7 edge position BFALSEBOOLrw27VARSegment 7 differenceFALSEBOOLrw28VARSegment 7 center axesFALSEBOOLrw29VARSegment 8 edge position AFALSEBOOLrw30VARSegment 8 edge position BFALSEBOOLrw31VARSegment 8 differenceFALSEBOOLrw32VARSegment 8 center axesFALSEBOOLrw	22	VAR	Segment 6 edge position B	FALSE	BOOL	rw			
24VARSegment 6 center axesFALSEBOOLrw25VARSegment 7 edge position AFALSEBOOLrw26VARSegment 7 edge position BFALSEBOOLrw27VARSegment 7 differenceFALSEBOOLrw28VARSegment 7 center axesFALSEBOOLrw29VARSegment 8 edge position AFALSEBOOLrw30VARSegment 8 edge position BFALSEBOOLrw31VARSegment 8 differenceFALSEBOOLrw32VARSegment 8 center axesFALSEBOOLrw	23	VAR	Segment 6 difference	FALSE	BOOL	rw			
25VARSegment 7 edge position AFALSEBOOLrw26VARSegment 7 edge position BFALSEBOOLrw27VARSegment 7 differenceFALSEBOOLrw28VARSegment 7 center axesFALSEBOOLrw29VARSegment 8 edge position AFALSEBOOLrw30VARSegment 8 edge position BFALSEBOOLrw31VARSegment 8 differenceFALSEBOOLrw32VARSegment 8 center axesFALSEBOOLrw	24	VAR	Segment 6 center axes	FALSE	BOOL	rw			
26VARSegment 7 edge position BFALSEBOOLrw27VARSegment 7 differenceFALSEBOOLrw28VARSegment 7 center axesFALSEBOOLrw29VARSegment 8 edge position AFALSEBOOLrw30VARSegment 8 edge position BFALSEBOOLrw31VARSegment 8 differenceFALSEBOOLrw32VARSegment 8 center axesFALSEBOOLrw	25	VAR	Segment 7 edge position A	FALSE	BOOL	rw			
27VARSegment 7 differenceFALSEBOOLrw28VARSegment 7 center axesFALSEBOOLrw29VARSegment 8 edge position AFALSEBOOLrw30VARSegment 8 edge position BFALSEBOOLrw31VARSegment 8 differenceFALSEBOOLrw32VARSegment 8 center axesFALSEBOOLrw	26	VAR	Segment 7 edge position B	FALSE	BOOL	rw			
28VARSegment 7 center axesFALSEBOOLrw29VARSegment 8 edge position AFALSEBOOLrw30VARSegment 8 edge position BFALSEBOOLrw31VARSegment 8 differenceFALSEBOOLrw32VARSegment 8 center axesFALSEBOOLrw	27	VAR	Segment 7 difference	FALSE	BOOL	rw			
29VARSegment 8 edge position AFALSEBOOLrw30VARSegment 8 edge position BFALSEBOOLrw31VARSegment 8 differenceFALSEBOOLrw32VARSegment 8 center axesFALSEBOOLrw	28	VAR	Segment 7 center axes	FALSE	BOOL	rw			
30VARSegment 8 edge position BFALSEBOOLrw31VARSegment 8 differenceFALSEBOOLrw32VARSegment 8 center axesFALSEBOOLrw	29	VAR	Segment 8 edge position A	FALSE	BOOL	rw			
31VARSegment 8 differenceFALSEBOOLrw32VARSegment 8 center axesFALSEBOOLrw	30	VAR	Segment 8 edge position B	FALSE	BOOL	rw			
32 VAR Segment 8 center axes FALSE BOOL rw	31	VAR	Segment 8 difference	FALSE	BOOL	rw			
	32	VAR	Segment 8 center axes	FALSE	BOOL	rw			

• The object is active in the measurement program segment only, see A 6.3.3.12. 1

A 6.3.3.20 Object 21C0h: Ethernet

21C0	RECORD	Ethernet			ro				
Subindices									
0	VAR	Number of entries	8	Unsigned8	ro				
1	VAR	IP address	XXX.XXX.XXX.XXX	Visible String	rw				
2	VAR	Subnet mask	XXX.XXX.XXX.XXX	Visible String	rw				
3	VAR	Gateway	XXX.XXX.XXX.XXX	Visible String	rw				
4	VAR	DHCP	FALSE	BOOL	rw				
5	VAR	Measured value server protocol	0	Unsigned8	rw				
6	VAR	Measured value server IP-Address	xxx.xxx.xxx	Visible String	rw				
7	VAR	Measured value server port	x	Unsigned16	rw				
8	VAR	MAC address	xx.xx.xx.xx.xx.xx	Visible String	ro				

DHCP:

- 0 – Static IP address

- 1 – DHCP

Measured value server protocol:

- 0 No transmission
- 1 Client/TCP
- 2 Client/UDP
- 3 Server/TCP

Further details can be found in the section Ethernet IP settings, see A 4.5.1.2, see A 4.5.1.3.

A 6.3.3.21 Object 21D0h: Analog output

Assign measurements and scaling of the analog output.

21D0	RECORD	Analog output			ro
Subindice	es				
0	VAR	Number of entries	1	Unsigned8	ro
1	VAR	Analog output	x	Unsigned8	rw
2	VAR	Analog output signal	x	Unsigned8	rw
3	VAR	Analog output type of scaling	x	Unsigned8	rw
4	VAR	Analog output two-point-scaling start	x.x	FLOAT32	rw
5	VAR	Analog output two-point-scaling end	x.x	FLOAT32	rw

Further details can be found in the section Analog output, see Chap. 7.7, see A 4.5.4.

Analog output:

- 1 No analog output (inactive)
- 0 Voltage 0 ... 10 V

Analog output signal: Further details can be found in the section measurement identifier, see Fig. 92.

The x value selection depends on the selected measurement program (object 2154h), see A 6.3.3.12.

Analog output, type of scaling:

- 0 Standard scaling
- 1 Two-point scaling

Analog output two-point-scaling, start: corresponds to 0 V

Analog output two-point-scaling, end: corresponds to 10 V

Value range x.x: 0.000 to 46 mm or 95 mm

A 6.3.3.22 Object 21E0h: Zeroing/Mastering

21E0	RECORD	Zeroing/Mastering			ro				
Subindices									
0	VAR	Number of entries	5	Unsigned8	ro				
2	VAR	Master value	x.xx	FLOAT32	rw				
3	VAR	Zeroing/Mastering active	FALSE	BOOL	rw				
4	VAR	Zeroing/Mastering	FALSE	BOOL	rw				
5	VAR	Reset master value	FALSE	BOOL	rw				
6	VAR	Master signal	x	Unsigned8	rw				

Master value:

- -46 ... 46 mm

- -95 ... 95 mm

Zeroing/Mastering active:

- 0 Measured value not zeroed/ mastered
- 1 Measured value moved by zeroing/ mastering

Master signal: Measurement value, which will be mastered. Further details can be found in the section measurement identifier, see Fig. 92.

The x value selection depends on the selected measurement program (object 2154h), see A 6.3.3.12.

Further details can be found in the section zeroing/mastering, see Chap. 7.4, see A 4.4.3.9.

A 6.3.3.23 Object 21F1h: Switching outputs

21F1	RECORD	Switching outputs	
		0	

Subindices

0	VAR	Number of entries	7	Unsigned8	ro
1	VAR	Switching output error 1	х	Unsigned8	rw
2	VAR	Switching output error 2	х	Unsigned8	rw
3	VAR	Lower limit value (mm)	x.xx	FLOAT32	rw
4	VAR	Upper limit value (mm)	x.xx	FLOAT32	rw
5	VAR	Signal for limit value output	х	Unsigned8	rw
6	VAR	Level of switching output error 1	x	Unsigned8	rw
7	VAR	Level of switching output error 2	x	Unsigned8	rw

Switching output error 1 and 2: Assignment of both switching outputs

- 0 No output
- 1 Switching output is switched in case of deceeding the lower limit
- 2 Switching output is switched in case of exceeding the upper limit
- 3 Switching output is switched in case of deceeding the lower limit or exceeding the upper limit
- 4 Switching output is switched in case of wrong anticipated number of edges
- 5 4 Switching output is switched in case of a measurement error, e.g. no edge detected

Lower and upper limit value:

46 mm: -100.0 ... +100.0

95 mm: -200.0 ... +200.0

Signal for limit value output: Further details can be found in the section measurement identifier, see Fig. 92.

The x value selection depends on the selected measurement program (object 2154h), see A 6.3.3.12.

Level of switching outputs:

- 0 PNP
- 1 NPN
- 2 Push-Pull
- 3 inverted Push-Pull

Further details can be found in the section switching outputs, see Chap. 7.6, see A 4.5.3.

ro

2410	RECORD	Trigger mode			ro
Subindic	es				
0	VAR	Number of entries	10	Unsigned8	ro
1	VAR	Trigger mode	0	Unsigned8	rw
2	VAR	Trigger edge/level	0	Unsigned8	rw
3	VAR	Number of values per trigger pulse	1	Unsigned16	rw
8	VAR	Software trigger pulse	FALSE	BOOL	rw
9	VAR	Trigger In/Out	FALSE	BOOL	rw
10	VAR	Termination synchro- nous/trigger input	FALSE	BOOL	rw

A 6.3.3.24 Object 2410h: Trigger mode

Trigger mode:

- 0 No triggering
- 1 Level triggering
- 2 Edge triggering
- 3 Software triggering
- 4 Encoder triggering

Trigger edge/level:

- 0 At edge triggering: falling edge; at level triggering: Low
- 1 At edge triggering: rising edge; at level triggering: High

Number of value per trigger pulse: Number of output data after a trigger pulse for edge or software triggering:

- 1...16382,
- 16383 = infinite,
- 0 = Stop

Further details can be found in the section triggering, see Chap. 7.9, see A 4.5.5.

A 6.3.3.25 Object 2550h: Threshold

2550	VAR	Threshold	12.5	FLOAT32	rw

Adjustment of the detection threshold in % (1.00 % up to 99.00 %). The detection threshold is specified with two decimal places.

Further details can be found in the section edge detection, see Chap. 6.3.2, see A 4.3.3.2.

A 6.3.3.26 Object 2711h: Range of interest

Masking the evaluation range (ROI).

2711	RECORD	Range of	interest			
Subindice	es					
				1		

0	VAR	Number of entries	2	Unsigned8	ro
1	VAR	Range of interest start	x	Unsigned16	rw
2	VAR	Range of interest end	х	Unsigned16	rw

Beginning and end (x) of the ROI must be between 0 up to 767. Unit is in pixels. The start value must be smaller than the end value.

Further details can be found in the section masking, see 7.13, see A 4.3.3.3.

A 6.3.3.27 Object 603Fh: Sensor error

603F	RECORD	Sensor error			
Subino	dices				
0	VAR	Number of entries	2	Unsigned8	ro
1	VAR	Sensor error number	х	Unsigned16	ro
2	VAR	Sensor error description	х	Visible String	ro

Sensor error number: Output of sensor error in communication

Sensor error description: Sensor error as plain text, e.g. "E11 The entered value is out of range or the format is invalid".

Further details can be found in the section Error messages, see A 4.6, see A 6.4.

A 6.3.3.28 Object 6060h: System values

6060	RECORD	System values		ro
Subin	dices			

Subindices

0	VAR	Number of entries	13	Unsigned8	ro
1	VAR	Value counter	х	Unsigned32	ro

Shows all selected measurement values or parameters with object 21B0h.

A 6.3.3.29 Object 6065h: Measuring value edge high-low

Output of measurement edge high-low, selected with object 21B1h.

6065	RECORD	Measuring value edge		ro
		high-low		

Subindices

0	VAR	Number of entries	1	Unsigned8	ro
1	VAR	Position of the first high- low edge	x	Signed32	ro

A 6.3.3.30 Object 6066h: Measuring value edge low-high

Output of measurement edge low-high, selected with object 21B2h.

6066	RECORD	Measuring value edge		ro
		low-high		

Subindices

0	VAR	Number of entries	1	Unsigned8	ro
1	VAR	Position of the first low-	х	Signed32	ro
		high edge			

A 6.3.3.31 Object 6067h: Measuring values diameter

Output of measurement diameter, selected with object 21B3h.

	6067	RECORD	Measuring values diameter			ro
--	------	--------	---------------------------	--	--	----

Subindices

0	VAR	Number of entries	4	Unsigned8	ro
1	VAR	Diameter edge position A	х	Signed32	ro

A 6.3.3.32 Object 6068h: Measuring values gap

Output of measurement gap, selected with object 21B4h.

6068	RECORD	Measuring values gap		ro
	1	0 01		

Sub-indices

-					
0	VAR	Number of entries	4	Unsigned8	ro
1	VAR	Gap edge position A	х	Signed32	ro

A 6.3.3.33 Object 6069h: Measuring values segment

Output of measurement segment, selected with object 21B5h.

6069	RECORD	Measuring values		ro
		segment		

Subindices

0	VAR	Number of entries	32	Unsigned8	ro
1	VAR	Segment 1 position A	x	Signed32	ro

A 6.4 Error Codes for SDO Services

In case of a negative evaluation of a SDO requirement, a corresponding error code is output in "Abort SDO Transfer Protocol".

Error code hexadecimal	Meaning
0503 0000	Toggle-Bit has not changed.
0504 0000	SDO protocol timeout expired
0504 0001	Invalid command registered
0504 0005	Not enough memory
0601 0000	Access to object (parameter) not supported.
0601 0001	Attempt to write to a "read-only parameter"
0601 0002	Attempt to write to a "read-only parameter"
0602 0000	Object (parameter) is not listed in the object directory.
0604 0041	Object (parameter) is not mapped on PDO
0604 0042	Number or length of objects to be transmitted exceeds PDO length.
0604 0043	General parameters incompatibility
0604 0047	General internal device incompatibility
0606 0000	Excess denied because of a hardware error
0607 0010	False data type or length of service parameter is incorrect.
0607 0012	False data type or length of service parameter is too large.
0607 0013	False data type or length of service parameter is too small.
0609 0011	Subindex does not exist
0609 0030	Invalid value of parameter (only for write access)
0609 0031	Value of the parameter too large
0609 0032	Value of the parameter too small
0609 0036	Maximum value deceeds minimum value.
0800 0000	General error
0800 0020	Data can not be transmitted or saved in application.
0800 0021	Data can not be transmitted or saved in application, because of local control.
0800 0022	Data can not be transmitted or saved in application, because device state.
0800 0023	Dynamic generation of object directory failed or no object directory is available

A 6.5 Measurement Data Formats

- Measured value counter (1 * 32 bit)
- Time stamp (1 * 32 bit)
- Displacement values (n * 32 bit)
- Error field (1 * 32 bit)
- Statistic values (Min/Max/Peak2Peak) (i * 32Bit)
- Number of edges (1 * 32 bit)
- Number of pins (1 * 32 bit)
- Number of gaps (1 * 32 bit)
- $n = \{1 ... 32\}$
- n = 1: Edge measurement high-low/low-high,
- $n = 1 \dots 4$: Diameter/gap measurement
- n = 1 ... 32: Segment measurement
- $i = \{0 ... 6\}$ Depends on activated statistic values

Further details to the setup of measured values can be found in the section measured value frame, see A 4.5.7.1.

A 6.6 Distributed Clock

A 6.6.1 Introduction

The synchronization of the ODC 2520 among each other in the EtherCAT is realized via the Distributed Clock.

Thus it it is not necessary or possible to transmit the synchronous signals via the synchronous input or output of the sensor.

Unlike the Ethernet the synchronization does not occur via external signals but about the clocks in the sensors. Using the EtherCAT this results in the synchronous modes y_n -chronization off (= Free Run) and y_n .

The minimum cycle time for distributed clock is 400 μ s for the ODC 2520.

A 6.6.2 Synchronization

Sensors, that support the synchronization in the EtherCAT mode, offer the additional tab DC in the TwinCat-Manager. In addition to the FreeRun mode (not synchronized), the sensor can be operated synchronously with different frequencies.

A 6.6.3 Synchronization off

In the FreeRun mode no synchronization of sensors occurs.

A 6.6.4 Slave

In the $\tt DC_Synchron\ 2.5kHz}$ mode the sensor is switched in the synchronization mode Slave.

Besides $_{\rm XXX}$ means the measuring rate. The sensor measures with the rate selected by $_{\rm XXX}$

A 6.6.5 Apply Selected Settings

Once the required synchronization mode is selected using the drop-down-menu, it is applied with F4.

A 6.6.6 Setting Regardless of TwinCat

The setting of the synchronisation mode in EtherCAT occurs via the setting of the registers for the Distributed Clocks. You will find details under www.beckhoff.de or www. ethercat.org.

For reading the settings in the TwinCAT it is possible to display the requirements of the XML file using the button Advanced Settings.

A 6.7 Oversampling

The last arised measurement value data record is transmitted to EtherCAT Master with each fieldbus cycle during operation without oversampling. Many measurement value data records are not available therefore for large fieldbus cycle times. All (or selectable) measurement value data records are collected with the configurable oversampling and are transmitted together to the master with the next fieldbus cycle.

Example:

The fieldbus/EtherCAT is operated with a cycle time of 1.2 ms, because, for example the PLC is operated with >1.2 ms cycle time. For this reason an EtherCAT frame is sent to the sensor for collection of process data every 1.2 ms. If the measurement frequency in the sensor is set to 46 mm: 2.5 kHz or 95 mm: 2.0 kHz, an oversampling of 3 must be set.

Procedure:

- Select the measuring data to be set in the object 0x21B0 (Digital interfaces) in preoparational state, for example
 - "Value counter"

File Edit V	fiew Project Build Debug	9 ·	TwinCAT PLC (역 - 문 - 탄	Tools S	cope Window ease 🔹 Tw	Help vinCAT RT	(x64)		• 🖄	
Solution Explo	orer \downarrow \downarrow \downarrow	252	> 10d × General EtherCAT	DC	9 C⊒ 	tup CoE ·	Online	Onlir	ne	_
a 2520 ▶ 2520)d SYSTEM		Update Lis	t	Auto Update	V Single	Update	e 📃 Sł	now Offline Dat	a
会 N 回 F 感 Q	MOTION PLC SAFETY		Advanced.		Online Data	Мо	dule O	D (AoE	Port): 0	
	C++		Index	Name			Flags		Value	
⊿ 🔽 I	/0		÷ 2165:0	Edges seg	ment		RO		> 16 <	-
⊿ *	B Devices		± 2181:0	Averaging	/error handling/statis	stics	RO		>17<	
4	Device 2 (EtherCAT)		E 21B0:0	Digital inte	rfaces		RO		> 16 <	
	📲 Image		21B0:01	Output			RW		0x05 (5)	
	Image-Info		2180:02	RS422 ba	ud rate		RW		0x003D0900	6
	SvncUnits		2180:03	Ethernet/F	therCAT		RW		TRUE	
	b D Inputs		2180:05	Value cour	nter		RW		TRUE	
	Outputs		2180:06	Timestamp			RW		TRUE	
	InfoData		21B0:07	Sensor sta	te		RW		TRUE	
	Box1 (ODC2520)		21B0:08	Number of	edges		RW		TRUE	
	DOX1 (ODC2520)		21B0-09	Number of	pins		RW		TRUE	
Set Value Di	ialog			💻 ber of	gaps		RW		TRUE	=
		_	\frown	atistic	minimum value		RW		TRUE	
Dec:	1		ОК	atistic	maximum value		RW		TRUE	
Hav	0-01		Cancel	atistic	peak-peak		RW		TRUE	
TICA.	0.01		Cancer	stistic	minimum value		RW		TRUE	
Float:	1			atistic	maximum value		RW		TRUE	
				atistic	peak-peak		RW		TRUE	-
					III				1	
Bool:			Hex Edit							
Binary:	01		1							
Bit Size:	◎1 ◎8 ◎16 ◎3	2 (64 🔿 ?	On	line	Туре		Size	>Addr	In/(
				0x0	0000000 (0)	ARRAY [0	4.0	26.0	Inp
		1								

Then read the object directory from the sensor.

Select another input as All Objects (e.g. Mappable Objects (TxPDO)) in the Advanced Settings dialog and then select All Objects.

Otherwise, it may be, that TwinCAT only reads the values of the objects already known to it. This is important for the next steps, because the Mapping (objects 0x1A00, 0x1A01, ... and 0x1C13) has changed.

Solution Explorer Solution '2520d' (1 project) Solution '2520d' (1 project) SSYSTEM MOTION PLC SAFETY	Image: system of the system	Startus CoE - Online Online fate I Single Update Show Offline Data Module OD (AoE Port): 0
96+ C++	Index Name	Flags Value ^
Advanced Settings	a contract in the second second	
Dictionary	Online via SDO Information Image: Construct of the second se	Device OD Module OD (via AoE port) 0
	Offline - via EDS File	Browse
		OK Cancel

Solution Explorer 🛛 🔻 🕂 🗙	2520d ×			
	General EtherCAT DC Process Dat	ta Startup Co	E - Online Or	aline
 Solution '2520d' (1 project) 2520d 	Sync Manager: P	PDO List:		
SYSTEM MOTION	SM Size Type Flags	Index Siz	e Name	
	0 256 MbxOut 1 256 MbxIn	0x1A00 4.0	Measva	alues
₩ C++	2 0 Outputs 1 3 4 Inputs			
▲ 📲 Devices				
⊿ 📑 Device 2 (EtherCAT) 1000 ■ Image				
Image-Info ▷ 2 SyncUnits	< ►	٠ III		Þ
👂 🔜 Inputs	PDO Assignment (0x1C13):	PDO Content (0x	1A00):	
	☑ 0×1A00	Index Siz	e Offs	Name
Box 1 (ODC2520)		0x6065:01 4.0	0.0	Position of the first
Mappings			4.0	
		•		4
	Download	Predefined PDO	Assignment: (n	ione) 🔻
	PDO Configuration	Sync Unit Assign	ment	

() Specification depends on the measuring program setting, see A 6.3.3.11.

General	EtherC/	T DC	Process	Data Startu	p CoE-	Online On	line				
Sync M	lanager:			PDO List:							
SM	Size	Туре	Flags	Index	Size	Name		Flags	SM	SU	
0	256	MbxOut		0x1A00	52.0	Sample	0	F	3	0	
1	256	MbxIn		0x1A01	52.0	Sample	1	F		0	E
2	0	Outputs	F	0x1A02	52.0	Sample	2	F		0	
3	52	Inputs		0x1A03	52.0	Sample	3	F		0	
				0x1A04	52.0	Sample	4	F		0	
				0x1A05	52.0	Sample	5	F		0	
				0x1A06	52.0	Sample	6	F		0	
				0x1A07	52.0	Sample	7	F		0	
				0x1A08	52.0	Sample	8	F		0	
					52.0	Sample 9 F				0	
	• III F			0-1 \0\	ED 0	Comolo	Comple 10 E			0	
PPO A	ssignmeni	t (0x1C13) :		PDO Conte	nt (0x1A00	D) :					
√ 0x1	A00			Index	Size	Offs	Name		Туре	Default (he:	x) 🔨
	AUT		E	0x6060:0	2 4.0	0.0	Value counter		DINT		
	A03			0x6060:0	3 4.0	4.0	Timestamp		DINT		E
0.1	A04			0x6060:0	4 4.0	8.0	Sensor state		DINT		
0x1	A05			0x6060:0	5 4.0	12.0	Number of edges		DINT		
0x1	A06			0x6060:0	6 4.0	16.0	Number of pins		DINT		
0x1	A07			0x6060:0	7 4.0	20.0	Number of gaps		DINT		
0x1	A08		-	0x6065:0	1 4.0	24.0	Position of the first high-low	edge	DINT		-
Dowr	nload			Predefined	I PDO Assi	ignment: (no	one)				Ŧ
V P	DO Assig	nment		Load PDO	info from a	device					
▼ P	DO Confi	guration		Sync Unit	Assignmen	ıt					

You can now view the size of the provided data and the mapping of SyncManager at delivery:

To set the oversampling (in example 10), 10 measurement data sets (samples) (1) are selected in the PDO mapping (0x1C13).

SM	Size	Туре	Flags	Index	Size	Name	F	lags	SM	SU	-
0	256	MbxOut		0x1A00	52.0	Sample (D F	:	3	0	
1	256	MbxIn		0x1A01	52.0	Sample	1 F	:	3	0	
2	D	Outputs	F	0x1A02	52.0	Sample 2	2 F	:	3	0	Ξ
3	520	Inputs		0x1A03	52.0	Sample 3	3 F	:	3	0	
				0x1A04	52.0	Sample 4	4 F		3	0	
				0x1A05	52.0	Sample §	5 F		3	0	
				0x1A06	52.0	Sample (6 F		3	0	
				0x1A07	52.0	Sample 7	7 F		3	0	
				0x1A08	52.0	Sample 8	B F		3	0	
				0x1A09	52.0	Sample S	9 F		3	0	
				0x1A0A	52.0	Sample 1	10 F	:		0	
4 III >			0x1A0B	52.0	Sample 11 F				0	-	
✓ 0x1A ✓ 0x1A	00	<u></u>	*	Index	Size	Offs	Name	T	уре	Default (hex	i) 🔺
🗸 0x1A	12		=	0x6060:02	4.0	0.0	Value counter		INT		- 11
🗸 🗘 🗸	33	\frown	_	0x6060:03	4.0	4.0	Timestamp				=
🗸 🗘 🗸	04			0x6060:04	4.0	8.0	Sensor state	L			_
✓ 0x1A	05			0x6060.05	4.0	12.0	Number of edges				
V 0x1A	16			0x6060.00	4.0	20.0	Number of gaps				
	10			0x6065:01	4.0	20.0	Position of the first high-low e	dae D	INT		
Z 0x14	19			0x6060:08	4.0	28.0	1 Statistic minimum value	rugo c	INT		
Ox1A	7		-	0x6060:09	4.0	32.0	1 Statistic maximum value		INT		-

Load these settings with the Reload Devices **button in the sensor**.

Every process data frame now contains 520 bytes (1) measuring data (13 measurement values (3) per 4 bytes (2) * 10 measuring data records).

In order to ensure that no samples will disappear, due to the high asymmetry between master cycle and slave cycle, the master cycle time is subject to be less than the time which is required for the generation of a block consisting of x samples.

A complete block is generated from the stated samples and first presented to the EtherCAT side after all stated samples have been written into the block. If the time for the writing into the block is shorter than the master cycle time, unfortunately single blocks cannot be transmitted. It can happen that the next block has already been filled with samples, before the previous filled block has been picked up with a master cycle.
Example: time for 3 samples < master cycle time

Example: time for 3 samples > master cycle time

If the number of samples selected is to high, i.e. the time for the filling of a block is longer than the master cycle time, each block is picked up by a master cycle. However, single blocks and therefore samples are transmitted twice or even more often. This can be detected on the master side by the transmission of the time stamp or value counter, see object 0x21B0.

A 6.8 Meaning of STATUS-LED in EtherCAT Operation

	Green					
	Green off	INIT status				
	Green flashing 2.5 Hz	PRE-OP status				
	Green Single Flash, 200 ms ON / 1000 ms OFF	SAFE-OP status				
	Green on	OP status				
Status LED	Red (are displayed in the breaks of the green LED):					
	Red off	No error				
	Red flashing 2.5 Hz	Invalid configuration				
	Red Single Flash, 200 ms ON / 1000 ms OFF	Not requested status change				
	Red Double Flash, 200 ms ON / 200 ms OFF 200 ms ON 400 ms OFF	Timeout of the watchdog				
	Red flashing 10 Hz	Error by initializing				

EtherCAT Configuration with the Beckhoff TwinCAT© Manager A 6.9

For example the Beckhoff TwinCAT Manager can be used as EtherCAT Master on the PC.

Copy the device description file (EtherCAT®-Slave Information) ODC2520-Ether-CAT-XML.zip in the directory \\TwinCAT\3.1\Config\IO\EtherCAT before the measuring device can be configured via EtherCAT®.

The device description file is available online at https://www.micro-epsilon.de/download/ software/ODC2520-EtherCAT-XML.zip.

EtherCAT®-Slave information files are XML files, which specify the characteristics of the Slave device for the EtherCAT® Master and contain informations to the supported communication objects.

Restart the TwinCAT Manager after copying.

Searching for a device:

Select the tab I/O Devices, then Scan Devices.

Confirm with OK.

Confirm with OK.

Microsoft Visual Studio Scan for boxes No

Confirm with Yes.

The sensor is now shown in a list.

Now confirm the window Activate Free Run with Yes.

The current status should be at least PREOP, SAFEOP or OP on the Online side.

Solution Explorer 🔹 🕂 🗙	ODC2520 Mo ×	
		_
Solution 'ODC2520 Mo' (1 project)		_
ODC2520 Mo	State Machine	
SYSTEM	Init Bootstrap	
A MOTION	Current State: ERR PREOP	
PLC	Requested State: PREOP	
SAFETY	Op Clear Error	
‰ C++		
⊿ 🔽 I/O	DLL Status	
a ⁴⁰ _E Devices	Port A: Carrier / Open	
Device 2 (EtherCAT)	Dat D: No Carrier (Closed	
🛟 Image	Port B: No Camer / Closed	
🛟 Image-Info	Port C: No Carrier / Closed	
SyncUnits	Port D: No Carrier / Closed	
Inputs		
Dutputs	- File Access over EtherCAT	
InfoData	Download	
Box 1 (ODC2520)	bownload	
T Mannings		

If ERP PREOP appears in the Current State, the cause is reported in the message window. In the example here the incorrect initialization of the synchronization manager is the reason. This will be the case if the settings for the PDO mapping in the sensor are different from the settings in the ESI file (optoCONTROL2520compact.xml).

On delivery of the sensor only one measurement value (position of the first edge highlow) is set as output size (in both the sensor and in the ESI file).

Additional data can be selected in the object 21B0h, for example time stamp or number of pins.

To configure the synchronous manager correctly, it is first necessary to read the object directory of the sensor.

Solution Explorer 🛛 👻 🕂 🗙	ODC2520 M₀ ×	Proper
	General EtherCAT DC Process Data Startup CoE - Online Online Update List Image: Color online Image: Color online Online Update List Image: Color online Image: Color online Online Advanced All Objects Image: Color online Online Image: Color online Image: Color online Add to Startup Online Data Module OD (AoE Port): Image: Color online Index Name Flags Value Image: Color online Color online Advanced Settings Color online Color online Color online Color online	×
 Devices Device 2 (EtherCAT) Image-Info SyncUnits Inputs InfoData Mappings 	Dictionary Online - via SDO Information Ottline - from Device Description Module OD (via AoE port) All Objects Mappable Objects (RxPDO) Backup Objects Settings Objects Offline - via EDS File Offline - via EDS File 	

Confirm with OK.

Thus TwinCAT reads all values of objects known to it. This is important for the next step, because the mapping (objects 0x1A00, 0x1A01, ... and 0x1A18) has changed.

Example for a complete object directory (subject to change without prior notice).

Solution Explorer 🛛 🝷 🕂 🗙	ODC2520 Mo ×					
Solution 'ODC2520 Mo' (1 project)	General EtherC	AT DC	Process Data Startu	ip CoE - Online Or	line	
ODC2520 Mo Mo SYSTEM	Update	List	Auto Update	✔ Single Update	Show Offline Data	
MOTION PLC SAFETY	Add to Sta	Add to Startup Online Data Module OD (AoE Port): 0				
96+ C++	Index	Name		Flags	Value	*
🔺 🔀 I/O	1000	1000 Device type		RO	0x00020000 (131072)	-
Devices	1001	Error reg	ister	RO	0x00 (0)	-
Device 2 (EtherCAT)		Error hist	ory	RW	> 0 <	
🛟 Image	1008	Device r	name	RO	ODC2520	
🛟 💭 Image-Info	1009	Hardwar	e version	RO	V 3.017	
SyncUnits	100A	Software	version	RO	V 3.024	
Inputs		Identity		RO	> 4 <	
Outputs		Sample (0	RO	> 13 <	
InfoData		Sample	1	RO	> 13 <	
Box 1 (ODC2520)		Sample 2	2	RO	> 13 <	
Mannings	. . € 1A03:0	Sample 3	3	RO	> 13 <	
- mappings	. 1 A04:0	Sample 4	4	RO	> 13 <	
	. € 1A05:0	Sample	5	RO	> 13 <	*

On the Process Data side the PDO allocations can be read from the device.

The scope of the provided process data and the assignment of the SyncManager may be viewed now.

Now select the tab Reload Devices under the menu item TwinCAT.

The configuration is now complete.

Name	Online	Туре	Size	>Address	In/Out	Us
🔁 Value counter	0x03AEC5DE (61785566)	DINT	4.0	26.0	Input	0
🔁 Timestamp	0xC12C4786 (-1054062714)	DINT	4.0	30.0	Input	0
🕫 Sensor state	0x7D0B0000 (2097872896)	DINT	4.0	34.0	Input	0
🕫 Number of edges	0x00000001 (1)	DINT	4.0	38.0	Input	0
🔁 Number of pins	0x00000000 (0)	DINT	4.0	42.0	Input	0
🔁 Number of gaps	0x00000000 (0)	DINT	4.0	46.0	Input	0
🔁 Position of the fi	0x7FFFFFB (2147483643)	DINT	4.0	50.0	Input	0
🔁 1.Statistic mini	0x7FFFFF8 (2147483640)	DINT	4.0	54.0	Input	0
🔁 1.Statistic maxi	0x7FFFFFF8 (2147483640)	DINT	4.0	58.0	Input	0

The selected measurement values are transmitted as process data in the status ${\tt SAFEOP}$ and ${\tt OP}$.

A 6.10 Exit EtherCAT

The sensor is in Run mode; the LED EtherCAT / Ethernet on the sensor lights up green.

- Select the TwinCAT > Restart TwinCAT (Config Mode) menu item in the TwinCAT Manager. Confirm the Activate Free Run window with No.
- Select the object 21B0: 03 and set the value of the parameter to 0. Confirm the dialog with OK.

ODC2520 Mo ×							
General EtherCAT DC Process Data Startup CoE - Online Online							
Update Lis	Update List Auto Update 🖉 Single Update 🥅 Show Offline Data						
Advanced	All Objects	Set Value Dialog					
Add to Start	up Online Data	Dec: OK	ן				
Index	Name	Hex: 0x00 Cancel	וו				
	Correction	Float: 0					
2101	Reset	l loat. O					
	Factory settings						
	Measuring distance		- II				
. . 2154:0	Measuring program	Bool: U 1 Hex Edit					
	Edges segment	Binary: 00 1					
	Averaging/error handling/statist	tic					
Ė ~ 21B0:0	Digital interfaces	Bit Size: 0 1 8 16 32 64 ?					

Select the object 2010:02 and set the value of the parameter to 1. Confirm the dialog with OK.

ODC2520 Mo ×								
General EtherCAT DC Process Data Startup CoE - Online Online								
Update List Auto Update 🗸 Single Update 🗌 Show Offline Data								
Advanced	All Objects	Set Value Dialog		×				
Add to Startu	up Online Data	Dec:		ОК				
Index	Name	Hex: 0x	:01	Cancel				
庄 - 1A18:0	Sample 24	Float: 1						
	Sync manager type	Those T						
	RxPDO assign							
	TxPDO assign	Book	0 1	HeyEdit				
	SM input parameter							
	User level	Binary: 01		1				
. <u>+</u> 2005:0	Controller info	Dit Cine:	1 0 0 10 0 22					
i⊟ ·· 2010:0	Setup	Dit Size.	1 0 0 10 0 32	0 04 0 ?				
2010:01	Setup number							
2010:02	Setup store	RW	FALSE					
2010:03	Setup read	RW	FALSE					
2010-04	Keen device settings	RW	FALSE					

This procedure save the settings.

- Exit the TwinCAT-Manager.
- Restart the sensor.

The Status LED on the sensor is off. The sensor is now in the Ethernet mode.

A 7 Activate Ethernet Interface

Initial situation: The sensor is incorrectly set to EtherCAT. The sensor operates in the EtherCAT Run mode; the <code>Status</code> LED on the sensor lights up green.

Purpose: Enable Ethernet interface.

The TwinCAT-Manager program is installed, the device description file from the online directory https://www.micro-epsilon.de/download/software/ODC2520-EtherCAT-XML.zip is copied to the \\TwinCAT\3.1\Config\IO\EtherCAT directory.

- Restart the sensor.
- Restart the TwinCAT-Manager.
- Select the menu I/O Devices, then Scan.

Confirm with OK.

Select a network card, where EtherCAT®–Slaves should be searched.

Confirm with OK.

Confirm with Yes.

It appears the window Scan for boxes (EtherThe sensor is now shown in a list.

Now confirm the window Activate Free Run with No.

Continue with the instructions to exit EtherCAT, see Chap. A 6.10.

MICRO-EPSILON Eltrotec GmbH Manfred-Wörner-Straße 101 · 73037 Göppingen / Germany Tel. +49 (0) 7161 / 98872-300 · Fax +49 (0) 7161 / 98872-303 eltrotec@micro-epsilon.com · www.micro-epsilon.com Your local contact: www.micro-epsilon.com/contact/worldwide/

X9751306-B022014HDR © MICRO-EPSILON MESSTECHNIK